

The SdePy Package

	1. Getting Started
	1.1. SdePy
	1.1.1. Start here

	1.1.2. License

	1.2. Quick Guide
	1.2.1. Install and import

	1.2.2. How to state an SDE

	1.2.3. How to integrate an SDE

	1.2.4. How to handle the integration output

	1.2.5. Example - Stochastic Runge-Kutta

	1.2.6. Example - Fokker-Planck Equation

	1.2.7. Example - Basket Lookback Option

	2. API Documentation
	2.1. Overview

	2.2. Infrastructure
	2.2.1. sdepy.process

	2.2.2. sdepy.montecarlo

	2.3. Stochasticity Sources
	2.3.1. sdepy.source

	2.3.2. sdepy.wiener_source

	2.3.3. sdepy.poisson_source

	2.3.4. sdepy.cpoisson_source

	2.3.5. sdepy.odd_wiener_source

	2.3.6. sdepy.even_poisson_source

	2.3.7. sdepy.even_cpoisson_source

	2.3.8. sdepy.true_source

	2.3.9. sdepy.true_wiener_source

	2.3.10. sdepy.true_poisson_source

	2.3.11. sdepy.true_cpoisson_source

	2.3.12. sdepy.norm_rv

	2.3.13. sdepy.uniform_rv

	2.3.14. sdepy.exp_rv

	2.3.15. sdepy.double_exp_rv

	2.3.16. sdepy.rvmap

	2.4. SDE Integration Framework
	2.4.1. sdepy.paths_generator

	2.4.2. sdepy.integrator

	2.4.3. sdepy.SDE

	2.4.4. sdepy.SDEs

	2.4.5. sdepy.integrate

	2.5. Stochastic Processes
	2.5.1. sdepy.wiener_process

	2.5.2. sdepy.lognorm_process

	2.5.3. sdepy.ornstein_uhlenbeck_process

	2.5.4. sdepy.hull_white_process

	2.5.5. sdepy.hull_white_1factor_process

	2.5.6. sdepy.cox_ingersoll_ross_process

	2.5.7. sdepy.full_heston_process

	2.5.8. sdepy.heston_process

	2.5.9. sdepy.jumpdiff_process

	2.5.10. sdepy.merton_jumpdiff_process

	2.5.11. sdepy.kou_jumpdiff_process

	2.5.12. sdepy.wiener_SDE

	2.5.13. sdepy.lognorm_SDE

	2.5.14. sdepy.ornstein_uhlenbeck_SDE

	2.5.15. sdepy.hull_white_SDE

	2.5.16. sdepy.cox_ingersoll_ross_SDE

	2.5.17. sdepy.full_heston_SDE

	2.5.18. sdepy.heston_SDE

	2.5.19. sdepy.jumpdiff_SDE

	2.5.20. sdepy.merton_jumpdiff_SDE

	2.5.21. sdepy.kou_jumpdiff_SDE

	2.6. Analytical Results
	2.6.1. sdepy.wiener_mean

	2.6.2. sdepy.wiener_var

	2.6.3. sdepy.wiener_std

	2.6.4. sdepy.wiener_pdf

	2.6.5. sdepy.wiener_cdf

	2.6.6. sdepy.wiener_chf

	2.6.7. sdepy.lognorm_mean

	2.6.8. sdepy.lognorm_var

	2.6.9. sdepy.lognorm_std

	2.6.10. sdepy.lognorm_pdf

	2.6.11. sdepy.lognorm_cdf

	2.6.12. sdepy.lognorm_log_chf

	2.6.13. sdepy.oruh_mean

	2.6.14. sdepy.oruh_var

	2.6.15. sdepy.oruh_std

	2.6.16. sdepy.oruh_pdf

	2.6.17. sdepy.oruh_cdf

	2.6.18. sdepy.hw2f_mean

	2.6.19. sdepy.hw2f_var

	2.6.20. sdepy.hw2f_std

	2.6.21. sdepy.hw2f_pdf

	2.6.22. sdepy.hw2f_cdf

	2.6.23. sdepy.cir_mean

	2.6.24. sdepy.cir_var

	2.6.25. sdepy.cir_std

	2.6.26. sdepy.cir_pdf

	2.6.27. sdepy.heston_log_mean

	2.6.28. sdepy.heston_log_var

	2.6.29. sdepy.heston_log_std

	2.6.30. sdepy.heston_log_pdf

	2.6.31. sdepy.heston_log_chf

	2.6.32. sdepy.mjd_log_pdf

	2.6.33. sdepy.mjd_log_chf

	2.6.34. sdepy.kou_mean

	2.6.35. sdepy.kou_log_pdf

	2.6.36. sdepy.kou_log_chf

	2.6.37. sdepy.bsd1d2

	2.6.38. sdepy.bscall

	2.6.39. sdepy.bscall_delta

	2.6.40. sdepy.bsput

	2.6.41. sdepy.bsput_delta

	2.7. Shortcuts
	2.7.1. sdepy.kfunc

	2.7.2. sdepy.iskfunc

1. Getting Started

1.1. SdePy

[image: Documentation Status] [https://sdepy.readthedocs.io/en/v1.0.0] [image: travis] [https://travis-ci.org/sdepy/sdepy] [image: codecov] [https://codecov.io/gh/sdepy/sdepy]

The SdePy package provides tools to state and numerically
integrate Ito Stochastic Differential Equations (SDEs), including equations
with time-dependent parameters, time-dependent correlations, and
stochastic jumps, and to compute with, and extract statistics from,
their realized paths.

Several preset processes are provided, including lognormal,
Ornstein-Uhlenbeck, Hull-White n-factor, Heston, and jump-diffusion processes.

Computations are fully vectorized across paths, via NumPy and SciPy,
making live sessions with 100000 paths reasonably fluent
on single cpu hardware.

This package came out of practical need, so expect a flexible tool
that gets real-life things done. On the other hand, not every part of it
is clean and polished, so expect rough edges, and the occasional
bug (please report!).

Developers are committed to the stability of the public API,
here again out of practical need to safeguard dependencies.

1.1.1. Start here

	Installation [https://pypi.org/project/sdepy]: pip install sdepy

	Quick Guide [https://sdepy.readthedocs.io/en/v1.0.0/intro.html#id2]
(as code [https://github.com/sdepy/sdepy/blob/v1.0.0/quickguide.py])

	Documentation [https://sdepy.readthedocs.io/en/v1.0.0]
(as pdf [https://readthedocs.org/projects/sdepy/downloads/pdf/v1.0.0])

	Source [https://github.com/sdepy/sdepy]

	License [https://github.com/sdepy/sdepy/blob/v1.0.0/LICENSE.txt]

	Bug Reports [https://github.com/sdepy/sdepy/issues]

1.1.2. License

Copyright (c) 2018, Maurizio Cipollina

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

This package reuses the compatibly licensed files listed below.

File: sdepy/doc/_templates/autosummary/class.rst
License: 3-clause BSD

For details, see sdepy/doc/_templates/autosummary/LICENSE.txt

1.2. Quick Guide

1.2.1. Install and import

Install using pip install sdepy, or copy the package source code
in a directory in your Python path.

Import as

>>> import sdepy
>>> from sdepy import * # safe and handy for interactive sessions
>>> import numpy as np
>>> import scipy
>>> import matplotlib.pyplot as plt # optional, if plots are needed

1.2.2. How to state an SDE

Here follows a bare-bone definition of a Stochastic Differential
Equation (SDE), in this case a Ornstein-Uhlenbeck process:

>>> @integrate
... def my_process(t, x, theta=1., k=1., sigma=1.):
... return {'dt': k*(theta - x), 'dw': sigma}

This represents the SDE dX = k*(theta - X)*dt + sigma*dW(t),
where theta, k and sigma are parameters and dW(t) are Wiener
process increments. A further 'dn' or 'dj' entry in the returned
dictionary would allow for Poisson or compound Poisson jumps.

A number of preset processes are provided, including lognormal processes,
Hull-White n-factor processes, Heston processes, and jump-diffusion processes.

1.2.3. How to integrate an SDE

Now my_process is a class, a subclass of the cooperating SDE
and integrator classes:

>>> issubclass(my_process, integrator), issubclass(my_process, SDE)
(True, True)

It is to be instantiated with a number
of parameters, including the SDE parameters theta, k and sigma;
its instances are callable, given a timeline they will integrate and
return the process along it. Decorating my_process with kunfc
allows for more concise handling of parameters:

>>> myp = kfunc(my_process)
>>> iskfunc(myp)
True

It is best explained by examples:

	Scalar process in 100000 paths, with default parameters, computed
at 5 time points, using 100 steps in between:

>>> coarse_timeline = (0., 0.25, 0.5, 0.75, 1.0)
>>> np.random.seed(1) # make doctests predictable
>>> x = my_process(x0=1, paths=100*1000,
... steps=100)(coarse_timeline)
>>> x.shape
(5, 100000)

	Vector process with three components and correlated Wiener increments
(same parameters, paths, timeline and steps as above):

>>> corr = ((1, .2, -.3), (.2, 1, .1), (-.3, .1, 1))
>>> x = my_process(x0=1, vshape=3, corr=corr,
... paths=100*1000, steps=100)(coarse_timeline)
>>> x.shape
(5, 3, 100000)

	Vector process with time-dependent parameters and correlations,
computed on a fine-grained timeline and 10000 paths, using one
integration step for each point in the timeline (no steps parameter):

>>> timeline = np.linspace(0., 1., 101)
>>> corr = lambda t: ((1, .2, -.1*t), (.2, 1, .1), (-.1*t, .1, 1))
>>> theta, k, sigma = (lambda t: 2-t, lambda t: 2/(t+1), lambda t: np.sin(t/2))
>>> x = my_process(x0=1, vshape=3, corr=corr,
... theta=theta, k=k, sigma=sigma, paths=10*1000)(timeline)
>>> x.shape
(101, 3, 10000)
>>> gr = plt.plot(timeline, x[:, 0, :4]) # inspect a few paths
>>> plt.show(gr)

	A scalar process with path-dependent initial conditions and parameters,
integrated backwards (i0=-1):

>>> x0 = np.random.random(10*1000)
>>> sigma = 1 + np.random.random(10*1000)
>>> x = my_process(x0=x0, sigma=sigma, paths=10*1000,
... i0=-1)(timeline)
>>> x.shape
(101, 10000)
>>> (x[-1, :] == x0).all()
True

	A scalar process computed on a 10 x 15 grid of parameters sigma and
k (note that the shape of the initial conditions and of each
parameter should be broadcastable to the values of the process across
paths, i.e. to shape vshape + (paths,)):

>>> sigma = np.linspace(0., 1., 10).reshape(10, 1, 1)
>>> k = np.linspace(1., 2., 15).reshape(1, 15, 1)
>>> x = my_process(x0=1, theta=2, k=k, sigma=sigma, vshape=(10, 15),
... paths=10*1000)(coarse_timeline)
>>> x.shape
(5, 10, 15, 10000)
>>> gr = plt.plot(coarse_timeline, x[:, 5, ::2, :].mean(axis=-1))
>>> plt.show()

In the example above, set steps=100 to go from inaccurate and fast,
to meaningful and slow (the plot illustrates the k-dependence of
average process values).

	Processes generated using integration results as stochasticity sources
(mind using consistent vshape and paths, and synchronizing timelines):

>>> my_dw = integrate(lambda t, x: {'dw': 1})(vshape=1, paths=10000)(timeline)
>>> p = myp(dw=my_dw, vshape=3, paths=10000,
... x0=1, sigma=((1,), (2,), (3,))) # using myp = kfunc(my_process)
>>> x = p(timeline)
>>> x.shape
(101, 3, 10000)

Now, x1, x2, x3 = = x[:, 0], x[:, 1], x[:, 2] have different sigma,
but share the same dw increments, as can be seen plotting a path:

>>> k = 0 # path to be plotted
>>> gr = plt.plot(timeline, x[:, :, k])
>>> plt.show()

If more integrations steps are needed between points in the output timeline,
use steps to keep the integration timeline consistent with the one
of my_dw:

>>> x = p(coarse_timeline, steps=timeline)
>>> x.shape
(5, 3, 10000)

	Using stochasticity sources with memory
(mind using consistent vshape and paths):

>>> my_dw = true_wiener_source(paths=10000)
>>> p = myp(x0=1, k=1, sigma=1, dw=my_dw, paths=10000)

>>> t1 = np.linspace(0., 1., 30)
>>> t2 = np.linspace(0., 1., 100)
>>> t3 = t = np.linspace(0., 1., 300)
>>> x1, x2, x3 = p(t1), p(t2), p(t3)
>>> y1, y2, y3 = p(t, theta=1.5), p(t, theta=1.75), p(t, theta=2)

These processes share the same underlying Wiener increments:
x1, x2, x3 illustrate SDE integration convergence as steps become
smaller, and y1, y2, y3 illustrate how k affects paths,
all else being equal:

>>> i = 0 # path to be plotted
>>> gr = plt.plot(t, x1(t)[:, i], t, x2(t)[:, i], t, x3(t)[:, i])
>>> gr = plt.plot(t, y1[:, i], t3, y2[:, i], t3, y3[:, i])
>>> plt.show()

1.2.4. How to handle the integration output

SDE integrators return process instances, a subclass of np.ndarray
with a timeline stored in the t attribute (note the shape of x,
repeatedly used in the examples below):

>>> coarse_timeline = (0., 0.25, 0.5, 0.75, 1.0)
>>> timeline = np.linspace(0., 1., 101)
>>> x = my_process(x0=1, vshape=3, paths=1000)(timeline)
>>> x.shape
(101, 3, 1000)

x is a process instance, based on the given timeline:

>>> type(x)
<class 'sdepy.infrastructure.process'>
>>> np.isclose(timeline, x.t).all()
True

Whenever possible, a process will store references, not copies, of timeline
and values. In fact,

>>> timeline is x.t
True

The first axis is reserved for the timeline, the last for paths, and axes
in the middle match the shape of process values:

>>> x.shape == x.t.shape + x.vshape + (x.paths,)
True

Calling processes interpolates in time (the result is an array, not a process):

>>> y = x(coarse_timeline)

>>> y.shape
(5, 3, 1000)

>>> type(y)
<class 'numpy.ndarray'>

All array methods, including indexing, work as usual (no overriding),
and return NumPy arrays:

>>> type(x[0])
<class 'numpy.ndarray'>
>>> type(x.mean(axis=0))
<class 'numpy.ndarray'>

You can slice processes along time, values and paths with special indexing:

>>> y = x['t', ::2] # time indexing
>>> y.shape
(51, 3, 1000)
>>> y = x['v', 0] # values indexing
>>> y.shape
(101, 1000)
>>> y = x['p', :10] # paths indexing
>>> y.shape
(101, 3, 10)

The output of a special indexing operation is a process:

>>> isinstance(y, process)
True

Smart indexing is allowed. To select paths that cross x=0
at some point and for some component, use:

>>> i_negative = x.min(axis=(0, 1)) < 0
>>> y = x['p', i_negative]
>>> y.shape == (101, 3, i_negative.sum())
True

You can do algebra with processes that either share the same timeline, or are constant
(a process with a one-point timeline is assumed to be constant), and either have the
same number of paths, or are deterministic (with one path):

>>> x_const = x['t', 0] # a constant process
>>> x_one_path = x['p', 0] # a process with one path

>>> y = np.exp(x) - x_const
>>> z = np.maximum(x, x_one_path)

>>> isinstance(y, process), isinstance(z, process)
(True, True)

When integrating SDEs, the SDE parameters and/or stochasticity sources
accept processes as valid values (mind using deterministic processes, or
synchronizing the number of paths, and make sure that the shape of values
do broadcast together). To use a realization of my_process
as the volatility of a 3-component lognormal process, do as follows:

>>> stochastic_vol = my_process(x0=1, paths=10*1000)(timeline)
>>> stochastic_vol_x = lognorm_process(x0=1, vshape=3, paths=10*1000,
... mu=0, sigma=stochastic_vol)(timeline)

Processes have specialized methods, and may be analyzed, and their statistics
cumulated across multiple runs, using the montecarlo class. Some examples follow:

	Cumulative probability distribution function at t=0.5
of the process values of x across paths:

>>> cdf = x.cdf(0.5, x=np.linspace(-2, 2, 100)) # an array

	Characteristic function at t=0.5 of the same distribution:

>>> chf = x.chf(0.5, u=np.linspace(-2, 2, 100)) # an array

	Standard deviation across paths:

>>> std = x.pstd() # a one-path process
>>> std.shape
(101, 3, 1)

	Maximum value reached along the timeline:

>>> xmax = x.tmax() # a constant process
>>> xmax.shape
(1, 3, 1000)

	A linearly interpolated, or Gaussian kernel estimate (default)
of the probability distribution function (pdf) and its cumulated
values (cdf) across paths, at a given time point,
may be obtained using the montecarlo class:

>>> y = x(1)[0] # 0-th component of x at time t=1
>>> a = montecarlo(y, bins=30)
>>> ygrid = np.linspace(y.min(), y.max(), 200)
>>> gr = plt.plot(ygrid, a.pdf(ygrid), ygrid, a.cdf(ygrid))
>>> gr = plt.plot(ygrid, a.pdf(ygrid, method='interp', kind='nearest'))
>>> plt.show()

	A montecarlo instance can be used to cumulate the results
of multiple simulations, across multiple components of process values:

>>> p = my_process(x0=1, vshape=3, paths=10*1000)
>>> a = montecarlo(bins=100) # empty montecarlo instance
>>> for _ in range(10):
... x = p(timeline) # run simulation
... a.update(x(1)) # cumulate x values at t=1
>>> a.paths
100000
>>> gr = plt.plot(ygrid, a[0].pdf(ygrid), ygrid, a[0].cdf(ygrid))
>>> gr = plt.plot(ygrid, a[0].pdf(ygrid, method='interp', kind='nearest'))
>>> plt.show()

1.2.5. Example - Stochastic Runge-Kutta

Minimal implementation of a basic stochastic Runge-Kutta integration,
scheme, as a subclass of integrator (the A and dZ methods
below are the standardized way in which equations are exposed
to integrators):

>>> from numpy import sqrt
>>> class my_integrator(integrator):
... def next(self):
... t, new_t = self.itervars['sw']
... x, new_x = self.itervars['xw']
... dt = new_t - t
... A, dZ = self.A(t, x), self.dZ(t, dt)
... a, b, dw = A['dt'], A['dw'], dZ['dw']
... b1 = self.A(t, x + a*dt + b*sqrt(dt))['dw']
... new_x[...] = x + a*dt + b*dw + (b1 - b)/2 * (dw**2 - dt)/sqrt(dt)

SDE of a lognormal process, as a subclass of SDE,
and classes that integrate it with the default integration method (p1)
and via my_integrator (p2):

>>> class my_SDE(SDE):
... def sde(self, t, x): return {'dt': 0, 'dw': x}
>>> class p1(my_SDE, integrator): pass
>>> class p2(my_SDE, my_integrator): pass

Comparison of integration errors, as the integration from t=0 to
t=1 is carried out with an increasing number of steps:

>>> np.random.seed(1)
>>> args = dict(dw=true_wiener_source(paths=100), paths=100, x0=10)
>>> timeline = (0, 1)
>>> steps = np.array((2, 3, 5, 10, 20, 30, 50, 100,
... 200, 300, 500, 1000, 2000, 3000))
>>> exact = lognorm_process(mu=0, sigma=1, **args)(timeline)[-1].mean()
>>> errors = np.abs(np.array([
... [p1(**args, steps=s)(timeline)[-1].mean()/exact - 1,
... p2(**args, steps=s)(timeline)[-1].mean()/exact - 1]
... for s in steps]))
>>> ax = plt.axes(label=0); ax.set_xscale('log'); ax.set_yscale('log')
>>> gr = ax.plot(steps, errors)
>>> plt.show()
>>> print('euler error: {:.2e}\n rk error: {:.2e}'.format(errors[-1,0], errors[-1,1]))
euler error: 1.70e-03
 rk error: 8.80e-06

1.2.6. Example - Fokker-Planck Equation

Monte Carlo integration of partial differential equations, illustrated
in the simplest example of the heat equation diff(u, t) - k*diff(u, x, 2) == 0,
for the function u(x, t), i.e. the Fokker-Planck equation for the SDE
dX(t) = sqrt(2*k)*dW(t). Initial conditions at t=t0, two examples:

	u(x, t0) = 1 for lb < x < hb and 0 otherwise,

	u(x, t0) = sin(x).

Setup:

>>> from numpy import exp, sin
>>> from scipy.special import erf
>>> from scipy.integrate import quad
>>> np.random.seed(1)
>>> k = .5
>>> x0, x1 = 0, 10;
>>> t0, t1 = 0, 1
>>> lb, hb = 4, 6

Exact green function and solutions, to be checked against results:

>>> def green_exact(y, s, x, t):
... return exp(-(x - y)**2/(4*k*(t - s)))/sqrt(4*np.pi*k*(t - s))
>>> def u1_exact(x, t):
... return (erf((x - lb)/2/sqrt(k*(t - t0))) - erf((x - hb)/2/sqrt(k*(t - t0))))/2
>>> def u2_exact(x, t):
... return exp(-k*(t - t0))*sin(x)

Realization of the needed stochastic process, by backward integration from
a grid of final values of x at t=t1, using the preset
wiener_process class (the steps keyword is added as a reminder
of the setup needed for less-than-trivial equations, it does not actually
make a difference here):

>>> xgrid = np.linspace(x0, x1, 51)
>>> tgrid = np.linspace(t0, t1, 5)
>>> xp = wiener_process(paths=10000,
... sigma=sqrt(2*k), steps=100,
... vshape=xgrid.shape, x0=xgrid[..., np.newaxis],
... i0=-1)(timeline=tgrid)

Computation of the green function and of the solution u(x, t1)
(note the liberal use of scipy.integrate.quad below, enabled by
the smoothness of the Gaussian kernel estimate a[i, j].pdf):

>>> a = montecarlo(xp, bins=100)
>>> def green(y, i, j):
... """green function from (y=y, s=tgrid[i]) to (x=xgrid[j], t=t1)"""
... return a[i, j].pdf(y)
>>> u1, u2 = np.empty(51), np.empty(51)
>>> for j in range(51):
... u1[j] = quad(lambda y: green(y, 0, j), lb, hb)[0]
... u2[j] = quad(lambda y: sin(y)*green(y, 0, j), -np.inf, np.inf)[0]

Comparison against exact values:

>>> y = np.linspace(x0, x1, 500)
>>> for i, j in ((1, 20), (2, 30), (3, 40)):
... gr = plt.plot(y, green(y, i, j),
... y, green_exact(y, tgrid[i], xgrid[j], t1), ':')
>>> plt.show()
>>> gr = plt.plot(xgrid, u1, y, u1_exact(y, t1), ':')
>>> gr = plt.plot(xgrid, u2, y, u2_exact(y, t1), ':')
>>> plt.show()
>>> print('u1 error: {:.2e}\nu2 error: {:.2e}'.format(
... np.abs(u1 - u1_exact(xgrid, t1)).mean(),
... np.abs(u2 - u2_exact(xgrid, t1)).mean()))
u1 error: 2.49e-03
u2 error: 5.51e-03

1.2.7. Example - Basket Lookback Option

Take a basket of 4 financial securities, with risk-neutral probabilities following
lognormal processes in the Black-Sholes framework. Correlations, dividend yields
and term structure of volatility (will be linearly interpolated) are given below:

>>> corr = [
... [1, 0.50, 0.37, 0.35],
... [0.50, 1, 0.47, 0.46],
... [0.37, 0.47, 1, 0.19],
... [0.35, 0.46, 0.19, 1]]

>>> dividend_yield = process(c=(0.20, 4.40, 0., 4.80))/100
>>> riskfree = 0 # to keep it simple

>>> vol_timepoints = (0.1, 0.2, 0.5, 1, 2, 3)
>>> vol = np.array([
... [0.40, 0.38, 0.30, 0.28, 0.27, 0.27],
... [0.31, 0.29, 0.22, 0.16, 0.18, 0.21],
... [0.24, 0.22, 0.19, 0.19, 0.21, 0.22],
... [0.35, 0.31, 0.21, 0.18, 0.19, 0.19]])
>>> sigma = process(t=vol_timepoints, v=vol.T)
>>> sigma.shape
(6, 4, 1)

The prices of the securities at the end of each quarter for the next 2 years,
simulated across 50000 independent paths and their antithetics
(odd_wiener_source is used), are:

>>> maturity = 2
>>> timeline = np.linspace(0, maturity, 4*maturity + 1)
>>> p = lognorm_process(x0=100, corr=corr, dw=odd_wiener_source,
... mu=(riskfree - dividend_yield),
... sigma=sigma,
... vshape=4, paths=100*1000, steps=maturity*250)
>>> np.random.seed(1)
>>> x = p(timeline)
>>> x.shape
(9, 4, 100000)

A call option knocks in if any of the securities reaches a price below 80
at any quarter (starting from 100), and pays the lookback maximum attained
by the basket (equally weighted), minus 105, if positive.
Its price is:

>>> x_worst = x.min(axis=1)
>>> x_mean = x.mean(axis=1)
>>> down_and_in_paths = (x_worst.min(axis=0) < 80)
>>> lookback_x_mean = x_mean.max(axis=0)
>>> payoff = np.maximum(0, lookback_x_mean - 105)
>>> payoff[np.logical_not(down_and_in_paths)] = 0
>>> a = montecarlo(payoff, use='even')
>>> print(a)
 4.997 +/- 0.027

2. API Documentation

2.1. Overview

This package provides tools to state and numerically
integrate Ito Stochastic Differential Equations (SDEs), including equations
with time-dependent parameters, time-dependent correlations, and
stochastic jumps, and to compute with, and extract statistics from,
their realized paths.

Package contents:

	A set of tools to ease computations with stochastic processes,
as obtained from numerical integration of the corresponding SDE,
is provided via the process and montecarlo classes
(see Infrastructure):

	The process class, a subclass of numpy.ndarray representing
a sequence of values in time, realized in one or several paths.
Algebraic manipulations and ufunc computations are supported for
instances that share the same timeline, or are constant, and
comply with numpy broadcasting rules. Interpolation along
the timeline is supported via callability of process instances.
Process-specific functionalities, such as averaging and indexing
along time or across paths, are delegated to process-specific
methods, attributes and properties (no overriding
of numpy.ndarray operations).

	The montecarlo class, as an aid to cumulate the results
of several Monte Carlo simulations of a given
stochastic variable, and to extract summary estimates
for its probability distribution function and statistics.

	Numerical realizations of the differentials commonly found
as stochasticity sources in SDEs, are provided via
the source class and its subclasses, with or without memory
of formerly invoked realizations (see Stochasticity Sources).

	A general framework for stochastic step by step simulations,
and for numerical SDE integration, is provided via the
paths_generator class, and its cooperating subclasses
integrator, SDE and SDEs
(see SDE Integration Framework).
The full API allows for extensive customization of preprocessing,
post-processing, stochasticity sources instantiation and handling,
integration algorithms etc.
The integrate decorator provides a simple and concise interface
to handle standard use cases, via Euler-Maruyama integration.

	Several preset stochastic processes are provided, including lognormal,
Ornstein-Uhlenbeck, Hull-White n-factor, Heston, and
jump-diffusion processes (see Stochastic Processes).
Each process consists of a process generator class,
a subclass of integrator and SDE, named with a
_process suffix, and a definition of the underlying SDE,
a subclass of SDE or SDEs, named with a _SDE suffix.

	Several analytical results relating to the preset stochastic
processes are made available, as a general reference
and for testing purposes (see Analytical Results).
They are limited to the case of constant process parameters,
and with some further limitations on the parameters’ domains.
Function arguments are consistent with those of the
corresponding processes. Suffixes _pdf, _cdf and _chf
stand respectively for probability distribution
function, cumulative probability distribution function,
and characteristic function.
Black-Scholes formulae for the valuation of call and put options
have been included (with prefix bs).

	As an aid to interactive and notebook sessions, shortcuts are provided
for stochasticity sources and preset processes (see Shortcuts).
Shortcuts have been wrapped as “kfuncs”, objects with managed
keyword arguments that simplify interactive workflow when
frequent parameters tuning operations are needed
(see kfunc decorator documentation).
Analytical results are wrapped as kfuncs as well.

For all sources and processes, values can take any shape,
scalar or multidimensional. Correlated multivariate stochasticity sources are
supported. Poisson jumps are supported, and may be compounded with
any random variable supported by scipy.stats.
Time-varying process parameters (correlations, intensity of Poisson
processes, volatilities etc.) are allowed whenever applicable.
process instances act as valid stochasticity source realizations (as does
any callable object complying with a source protocol), and may be
passed as a source specification when computing the realization of a given
process.

Computations are fully vectorized across paths, providing an efficient
infrastructure for simulating a large number of process realizations.
Less so, for large number of time steps: integrating 100 time steps
across one million paths takes seconds, one million time steps across
100 paths takes minutes.

2.2. Infrastructure

	process([t, x, v, c, dtype])

	Array representation of a process (a subclass of numpy.ndarray).

	montecarlo([sample, axis, bins, range, use, …])

	Summary statistics of Monte Carlo simulations.

2.3. Stochasticity Sources

	source(*[, paths, vshape, dtype])

	Base class for stochasticity sources.

	wiener_source(*[, paths, vshape, dtype, …])

	dw, a source of standard Wiener process (Brownian motion) increments.

	poisson_source(*[, paths, vshape, dtype, lam])

	dn, a source of Poisson process increments.

	cpoisson_source(*[, paths, vshape, dtype, …])

	dj, a source of compound Poisson process increments (jumps).

	odd_wiener_source(*[, paths, vshape])

	dw, a source of standard Wiener process (Brownian motion) increments with antithetic paths exposing opposite increments (averages exactly to 0 across paths).

	even_poisson_source(*[, paths, vshape])

	dn, a source of Poisson process increments with antithetic paths exposing identical increments.

	even_cpoisson_source(*[, paths, vshape])

	dj, a source of compound Poisson process increments (jumps) with antithetic paths exposing identical increments.

	true_source(*[, paths, vshape, dtype, rtol, …])

	Base class for stochasticity sources with memory.

	true_wiener_source(*[, paths, vshape, …])

	dw, source of standard Wiener process (brownian motion) increments with memory.

	true_poisson_source(*[, paths, vshape, …])

	dn, a source of Poisson process increments with memory.

	true_cpoisson_source(*[, paths, vshape, …])

	dj, a source of compound Poisson process increments (jumps) with memory.

	norm_rv([a, b])

	Normal distribution with mean a and standard deviation b, possibly time-dependent.

	uniform_rv([a, b])

	Uniform distribution between a and b, possibly time-dependent.

	exp_rv([a])

	Exponential distribution with scale a, possibly time-dependent.

	double_exp_rv([a, b, pa])

	Double exponential distribution, with scale a with probability pa, and -b with probability (1 - pa), possibly time-dependent.

	rvmap(f, y)

	Map f to random variates of distribution y, possibly time-dependent.

2.4. SDE Integration Framework

	paths_generator(*[, paths, xshape, wshape, …])

	Step by step generation of stochastic simulations across multiple paths, intended for subclassing.

	integrator(*[, paths, xshape, wshape, …])

	Step by step numerical integration of Ito Stochastic Differential Equations (SDEs), intended for subclassing.

	SDE(*[, paths, vshape, dtype, steps, i0, …])

	Class representation of a user defined Stochastic Differential Equation (SDE), intended for subclassing.

	SDEs(*[, paths, vshape, dtype, steps, i0, …])

	Class representation of a user defined system of Stochastic Differential Equations (SDEs), intended for subclassing.

	integrate([sde, q, sources, log, addaxis])

	Decorator for Ito Stochastic Differential Equation (SDE) integration.

2.5. Stochastic Processes

	wiener_process([paths, vshape, dtype, …])

	Wiener process (Brownian motion) with drift.

	lognorm_process([paths, vshape, dtype, …])

	Lognormal process.

	ornstein_uhlenbeck_process([paths, vshape, …])

	Ornstein-Uhlenbeck process (mean-reverting Brownian motion).

	hull_white_process([paths, vshape, dtype, …])

	F-factors Hull-White process (sum of F correlated mean-reverting Brownian motions).

	hull_white_1factor_process([paths, vshape, …])

	1-factor Hull-White process (F=1 Hull-White process with F-index collapsed to a scalar).

	cox_ingersoll_ross_process([paths, vshape, …])

	Cox-Ingersoll-Ross mean reverting process.

	full_heston_process([paths, vshape, dtype, …])

	Heston stochastic volatility process (returns both process and volatility).

	heston_process([paths, vshape, dtype, …])

	Heston stochastic volatility process (stores and returns process only).

	jumpdiff_process([paths, vshape, dtype, …])

	Jump-diffusion process (lognormal process with compound Poisson logarithmic jumps).

	merton_jumpdiff_process([paths, vshape, …])

	Merton jump-diffusion process (jump-diffusion process with normal jump size distribution).

	kou_jumpdiff_process([paths, vshape, dtype, …])

	Double exponential (Kou) jump-diffusion process (jump-diffusion process with double exponential jump size distribution).

	wiener_SDE(*[, paths, vshape, dtype, steps, …])

	SDE for a Wiener process (Brownian motion) with drift.

	lognorm_SDE(*[, paths, vshape, dtype, …])

	SDE for a lognormal process with drift.

	ornstein_uhlenbeck_SDE(*[, paths, vshape, …])

	SDE for an Ornstein-Uhlenbeck process.

	hull_white_SDE(*[, paths, vshape, dtype, …])

	SDE for an F-factors Hull White process.

	cox_ingersoll_ross_SDE(*[, paths, vshape, …])

	SDE for a Cox-Ingersoll-Ross mean reverting process.

	full_heston_SDE(*[, paths, vshape, dtype, …])

	SDE for a Heston stochastic volatility process.

	heston_SDE(*[, paths, vshape, dtype, steps, …])

	SDE for a Heston stochastic volatility process.

	jumpdiff_SDE(*[, paths, vshape, dtype, …])

	SDE for a jump-diffusion process (lognormal process with compound Poisson logarithmic jumps).

	merton_jumpdiff_SDE(*[, paths, vshape, …])

	SDE for a Merton jump-diffusion process.

	kou_jumpdiff_SDE(*[, paths, vshape, dtype, …])

	SDE for a double exponential (Kou) jump-diffusion process.

2.6. Analytical Results

	wiener_mean(t, *[, x0, mu, sigma])

	Mean of values at time t of a Wiener process (as per the wiener_process class) with time-independent parameters.

	wiener_var(t, *[, x0, mu, sigma])

	Variance of values at time t of a Wiener process (as per the wiener_process class) with time-independent parameters.

	wiener_std(t, *[, x0, mu, sigma])

	Standard deviation of values at time t of a Wiener process (as per the wiener_process class) with time-independent parameters.

	wiener_pdf(t, x, *[, x0, mu, sigma])

	Probability distribution function of values at time t of a Wiener process (as per the wiener_process class) with time-independent parameters, evaluated at x.

	wiener_cdf(t, x, *[, x0, mu, sigma])

	Cumulative probability distribution function of values at time t of a Wiener process (as per the wiener_process class) with time-independent parameters, evaluated at x.

	wiener_chf(t, u, *[, x0, mu, sigma])

	Characteristic function of the probability distribution of values at time t of a Wiener process (as per the wiener_process class) with time-independent parameters, evaluated at u.

	lognorm_mean(t, *[, x0, mu, sigma])

	Mean of values at time t of a lognormal process (as per the lognorm_process class) with time-independent parameters.

	lognorm_var(t, *[, x0, mu, sigma])

	Variance of values at time t of a lognormal process (as per the lognorm_process class) with time-independent parameters.

	lognorm_std(t, *[, x0, mu, sigma])

	Standard deviation of values at time t of a lognormal process (as per the lognorm_process class) with time-independent parameters.

	lognorm_pdf(t, x, *[, x0, mu, sigma])

	Probability distribution function of values at time t of a lognormal process (as per the lognorm_process class) with time-independent parameters, evaluated at x.

	lognorm_cdf(t, x, *[, x0, mu, sigma])

	Cumulative probability distribution function of values at time t of a lognormal process (as per the lognorm_process class) with time-independent parameters, evaluated at x.

	lognorm_log_chf(t, u, *[, x0, mu, sigma])

	Characteristic function of the probability distribution of values at time t of the logarithm of a lognormal process (as per the lognorm_process class) with time-independent parameters, evaluated at u.

	oruh_mean(t, *[, x0, theta, k, sigma])

	Mean of values at time t of an Ornstein-Uhlenbeck process (as per the ornstein_uhlenbeck_process class) with time-independent parameters.

	oruh_var(t, *[, x0, theta, k, sigma])

	Variance of values at time t of an Ornstein-Uhlenbeck process (as per the ornstein_uhlenbeck_process class) with time-independent parameters.

	oruh_std(t, *[, x0, theta, k, sigma])

	Standard deviation of values at time t of an Ornstein-Uhlenbeck process (as per the ornstein_uhlenbeck_process class) with time-independent parameters.

	oruh_pdf(t, x, *[, x0, theta, k, sigma])

	Probability distribution function of values at time t of an Ornstein-Uhlenbeck process (as per the ornstein_uhlenbeck_process class) with time-independent parameters, evaluated at x.

	oruh_cdf(t, x, *[, x0, theta, k, sigma])

	Cumulative probability distribution function of values at time t of an Ornstein-Uhlenbeck process (as per the ornstein_uhlenbeck_process class) with time-independent parameters, evaluated at x.

	hw2f_mean(t, *[, x0, theta, k, sigma, rho])

	Mean of values at time t of a Hull-White 2-factors process (as per the hull_white_process class) with time-independent parameters.

	hw2f_var(t, *[, x0, theta, k, sigma, rho])

	Variance of values at time t of a Hull-White 2-factors process (as per the hull_white_process class) with time-independent parameters.

	hw2f_std(t, *[, x0, theta, k, sigma, rho])

	Standard deviation of values at time t of a Hull-White 2-factors process (as per the hull_white_process class) with time-independent parameters.

	hw2f_pdf(t, x, *[, x0, theta, k, sigma, rho])

	Probability distribution function of values at time t of a Hull-White 2-factors process (as per the hull_white_process class) with time-independent parameters, evaluated at x.

	hw2f_cdf(**args)

	Cumulative probability distribution function of values at time t of a Hull-White 2-factors process (as per the hull_white_process class) with time-independent parameters, evaluated at x.

	cir_mean(t, *[, x0, theta, k, xi])

	Mean of values at time t of a Cox-Ingersoll-Ross process (as per the cox_ingersoll_ross_process class) with time-independent parameters.

	cir_var(t, *[, x0, theta, k, xi])

	Variance of values at time t of a Cox-Ingersoll-Ross process (as per the cox_ingersoll_ross_process class) with time-independent parameters.

	cir_std(t, *[, x0, theta, k, xi])

	Standard deviation of values at time t of a Cox-Ingersoll-Ross process (as per the cox_ingersoll_ross_process class) with time-independent parameters.

	cir_pdf(t, x, *[, x0, theta, k, xi])

	Probability distribution function of values at time t of a Cox-Ingersoll-Ross process (as per the cox_ingersoll_ross_process class) with time-independent parameters, evaluated at x.

	heston_log_mean(t, *[, x0, mu, sigma, y0, …])

	Mean of the logarithm of values at time t of a Heston process (as per the full_heston_process class) with time-independent parameters.

	heston_log_var(**args)

	Variance of the logarithm of values at time t of a Heston process (as per the full_heston_process class) with time-independent parameters.

	heston_log_std(t, *[, x0, mu, sigma, y0, …])

	Standard deviation of the logarithm of values at time t of a Heston process (as per the full_heston_process class) with time-independent parameters.

	heston_log_pdf(t, logx, *[, x0, mu, sigma, …])

	Probability distribution function of values at time t of the logarithm of a Heston process, (as per the full_heston_process class) with time-independent parameters, evaluated at logx.

	heston_log_chf(t, u, *[, x0, mu, sigma, y0, …])

	Characteristic function of the probability distribution of values at time t of the logarithm of a Heston process (as per the full_heston_process class) , with time-independent parameters, evaluated at u.

	mjd_log_pdf(t, logx, *[, x0, mu, sigma, …])

	Probability distribution function of values at time t of the logarithm of a Merton jump-diffusion process (as per the merton_jumpdiff_process class), with time-independent parameters, evaluated at logx.

	mjd_log_chf(t, u, *[, x0, mu, sigma, lam, a, b])

	Characteristic function of the probability distribution of values at time t of the logarithm of a Merton jump-diffusion process (as per the merton_jumpdiff_process class), with time-independent parameters, evaluated at u.

	kou_mean(t, *[, x0, mu, sigma, lam, a, b, pa])

	Mean of values at time t of a double exponential (Kou) jump-diffusion process (as per the kou_jumpdiff_process class) with time-independent parameters.

	kou_log_pdf(t, logx, *[, x0, mu, sigma, …])

	Probability distribution function of values at time t of the logarithm of a double-exponential (Kou) jump-diffusion process (as per the kou_jumpdiff_process class), with time-independent parameters, evaluated at logx.

	kou_log_chf(t, u, *[, x0, mu, sigma, lam, …])

	Characteristic function of the probability distribution of values at time t of the logarithm of a Kou jump-diffusion process, (as per the kou_jumpdiff_process class) with time-independent parameters, evaluated at u.

	bsd1d2(k, t, *[, x0, r, q, sigma])

	Black-Scholes d1 and d2 coefficients.

	bscall(k, t, *[, x0, r, q, sigma])

	Black-Scholes call option value.

	bscall_delta(k, t, *[, x0, r, q, sigma])

	Black-Scholes call option delta.

	bsput(k, t, *[, x0, r, q, sigma])

	Black-Scholes put option value.

	bsput_delta(k, t, *[, x0, r, q, sigma])

	Black-Scholes put option delta.

2.7. Shortcuts

Stochasticity sources and preset processes may be addressed
using the following shortcuts:

	Full name

	Shortcut

	wiener_source

	dw

	poisson_source

	dn

	cpoisson_source

	dj

	odd_wiener_source

	odd_dw

	even_poisson_source

	even_dn

	even_cpoisson_source

	even_dj

	true_wiener_source

	true_dw

	true_poisson_source

	true_dn

	true_cpoisson_source

	true_dj

	wiener_process

	wiener

	lognorm_process

	lognorm

	ornstein_uhlenbeck_process

	oruh

	hull_white_process

	hwff

	hull_white_1factor_process

	hw1f

	cox_ingersoll_ross_process

	cir

	full_heston_process

	heston_xy

	heston_process

	heston

	jumpdiff_process

	jumpdiff

	merton_jumpdiff_process

	mjd

	kou_jumpdiff_process

	kou

Shortcuts have been wrapped as “kfuncs”, objects with managed
keyword arguments (see kfunc decorator documentation below).

Analytical results are named according to the shortcut
of the corresponding process (e.g. lognorm_mean, lognorm_cdf etc.
from the lognorm shortcut) and are wrapped as kfuncs as well.

	kfunc([f, nvar])

	Decorator to wrap classes or functions as objects with managed keyword arguments.

	iskfunc(cls_or_object)

	Tests if the given class or instance has been wrapped as a kfunc.

2.2.1. sdepy.process

	
class sdepy.process(t=0., *, x=None, v=None, c=None, dtype=None)

	Array representation of a process (a subclass of numpy.ndarray).

If p is a process instance, p[i, ..., k] is the value
that the k-th path of the represented process takes at time p.t[i].
The first and last indexes of p are reserved for the timeline and
paths respectively. A process should contain no less than 1 time point and
1 path. Zero or more middle indexes refer to the values that the process
takes at each given time and path.

If p has N time points, paths is its number of paths and
vshape is the shape of its values at any given time point and path,
then p.shape is (N,) + vshape + (paths,). N, vshape, paths
are inferred at instantiation from the shape of t and
x, v or c parameters.

	Parameters

	
	tarray-like

	Timeline of the process, as a one dimensional array
with shape (N,), in increasing order.
Defaults to 0.

	xarray-like, optional

	Values of the process along the timeline and across paths.
Should broadcast to (N,) + vshape + (paths,).
The shapes of t and of the firs index of x must match.
One and only one of x, v, c must be provided upon process
creation, as a keyword argument.

	varray-like, optional

	Values of a deterministic process along the timeline.
Should broadcast to (N,) + vshape.
The shapes of t and of the firs index
of v must match.

	carray-like, optional

	Value of a constant, single-path process, with shape vshape.
Each time point of the resulting process contains a copy of c.

	dtypedata-type, optional

	Data-type of the values of the process. x, v or c will
be converted to dtype if need be.

Notes

A reference and not a copy of t, x, v, c is stored if possible.

A process is a subclass of numpy.ndarray, where its values as an array
are the process values along the timeline and across paths. All
numpy.ndarray methods, attributes and properties are guaranteed to act
upon such values, as would those of the parent class. Such no-overriding
commitment is intended to safeguard predictablity of array operations
on process instances; process-specific functionalities are delegated
to process-specific methods, attributes and properties.

A process with a single time point is assumed to be constant.

Processes have the __array_priority__ attribute
set to 1.0 by default. Ufuncs acting on a process,
or on a process and an array, or on different processes sharing
the same timeline, or on different processes one of which is constant,
return a process with the timeline of the original
process(es) passed as a reference. Ufuncs calls on different processes
fail if non constant processes do not share the same timeline
(interpolation should be handled explicitly), or in case broadcasting
rules would result in mixing time, values and/or paths axes.

Let p be a process instance. Standard numpy indexing acts on the
process values and returns numpy.ndarray instances: in fact, p[i]
is equivalent to p.x[i], i.e. the same as p.view(numpy.ndarray)[i].
Process-specific indexing is addressed via the following syntax,
where i can be an integer, a multi-index or smart indexing reference
consistent with the process shape:

	p['t', i] : timeline indexing,
roughly equivalent to process(t=p.t[i], x=p.x[i, ..., :])

	p['v', i] : values indexing,
roughly equivalent to process(t=p.t, x=p.x[:, i, :])

	p['p', i] : paths indexing,
roughly equivalent to process(t=p.t, x=p.x[:, ..., i])

	Attributes

	
	x

	Process values, viewed as a numpy.ndarray.

	paths

	Number of paths of the process (coincides with the size of the last dimension of the process).

	vshape

	Shape of the values of the process.

	tx

	Timeline of the process, reshaped to be broadcastable to the process values and paths across time.

	dt

	Process timeline increments, as returned by numpy.diff.

	dtx

	Process timeline increments, as returned by numpy.diff, reshaped to be broadcastable to the process values.

	tarray

	Stores the timeline of the process.

	interp_kindstr

	Stores the default interpolation kind, passed upon interpolation
(interp and __call__ methods) to scipy.interpolate.interp1d
unless a specific kind is provided. Defaults to ‘linear’.

Methods

	interp(*[, kind])

	Interpolation in time of the process values.

	__call__(s[, ds, kind])

	Interpolation in time of process values or increments.

	__getitem__(key)

	See documentation of the process class.

	rebase(t, *[, kind])

	Change the process timeline to t, using interpolation.

	shapeas(vshape_or_process)

	Reshape process values according to the given target shape.

	pcopy(**args)

	Copy timeline and values of the process (args are passed to numpy.ndarray.copy).

	xcopy(**args)

	Copy values of the process, share timeline (args are passed to numpy.ndarray.copy).

	tcopy(**args)

	Copy timeline of the process, share values.

	pmin([out])

	One path process exposing for each time point the minimum process value attained across paths.

	pmax([out])

	One path process exposing for each time point the maximum process value attained across paths.

	psum([dtype, out])

	One path process exposing for each time point the sum of process values across paths.

	pmean([dtype, out])

	One path process exposing for each time point the mean of process values across paths.

	pvar([dtype, out, ddof])

	One path process exposing for each time point the variance of process values across paths.

	pstd([dtype, out, ddof])

	One path process exposing for each time point the standard deviation of process values across paths.

	tmin([out])

	Constant process exposing for each path the minimum process value attained along time.

	tmax([out])

	Constant process exposing for each path the maximum process value attained along time.

	tsum([dtype, out])

	Constant process exposing for each path the sum of process values along time.

	tmean([dtype, out])

	Constant process exposing for each path the mean of process values along time.

	tvar([dtype, out, ddof])

	Constant process exposing for each path the variance of process values along time.

	tstd([dtype, out, ddof])

	Constant process exposing for each path the standard deviation of process values along time.

	tdiff([dt_exp, fwd])

	Process increments along the timeline, optionally weighted by time increments.

	tder()

	Forward looking derivative of the given process, linearly interpolated between time points.

	tint()

	Integral of the given process, linearly interpolated between time points.

	chf([t, u])

	Characteristic function of the probability distribution of process values.

	cdf([t, x])

	Cumulative probability distribution function of process values.

2.2.1.1. sdepy.process.interp

	
process.interp(*, kind=None)

	Interpolation in time of the process values.

Returns a callable f, as returned by
scipy.interpolate.interp1d, such that f(s)
approximates the value of the process at time point s.
f refers to the process timeline and values,
without storing copies. s may be of any shape.

	Parameters

	
	kindstring

	An interpolation kind as accepted by
scipy.interpolate.interp1d. If None, defaults to
the interp_kind class attribute.

	Returns

	
	fcallable

	f, as returned by scipy.interpolate.interp1d,
such that f(s) approximates the value of the process
at time point s. f refers to the process timeline and values,
without storing copies.

s may be of any shape: if p is a process instance,
p.interp()(s).shape == s.shape + p.vshape + (p.paths,).

In case p has a single time point, interpolation
is not handled via scipy.interpolate.interp1d;
the process is assumed to be constant in time, and f
is a function object behaving accordingly.

See also

process.__call__

Notes

The process is extrapolated as constant outside the timeline
boundaries.

If p is a process instance, p.interp(s) is an array,
not a process.
If an interpolated process is needed, it should be explicitly
created using q = process(s, x=p(s)), or its shorthand
q = p.rebase(s).

2.2.1.2. sdepy.process.__call__

	
process.__call__(s, ds=None, *, kind=None)

	Interpolation in time of process values or increments.

If p is a process instance and f = p.interp(kind):

	p(s) returns f(s),

	p(s, ds) returns f(s + ds) - f(s).

See also

process.interp

2.2.1.3. sdepy.process.rebase

	
process.rebase(t, *, kind=None)

	Change the process timeline to t, using interpolation.

A new process is returned with timeline t and values
set to the calling process values, interpolated at
t using process.interp with the given interpolation kind.

If t is a scalar, a constant process is returned.

2.2.1.4. sdepy.process.shapeas

	
process.shapeas(vshape_or_process)

	Reshape process values according to the given target shape.

Returns a process pointing to the same data as the calling process,
adding new 1-dimensional axes, or removing existing 1-dimensional axes
to the left of the first dimension of process values, as needed to make
the returned process broadcastable to a process with values of the
given shape.

To achieve broadcastability the unaffected dimensions, including the
shape of the timeline and the number of paths, have to be compatible.

	Raises

	
	ValueErrorif requested to remove a non 1-dimensional axis

	

2.2.1.5. sdepy.process.pcopy

	
process.pcopy(**args)

	Copy timeline and values of the process
(args are passed to numpy.ndarray.copy).

2.2.1.6. sdepy.process.xcopy

	
process.xcopy(**args)

	Copy values of the process, share timeline
(args are passed to numpy.ndarray.copy).

2.2.1.7. sdepy.process.tcopy

	
process.tcopy(**args)

	Copy timeline of the process, share values.
(args are passed to numpy.ndarray.copy).

2.2.1.8. sdepy.process.pmin

	
process.pmin(out=None)

	One path process exposing for each time point
the minimum process value attained across paths.

2.2.1.9. sdepy.process.pmax

	
process.pmax(out=None)

	One path process exposing for each time point
the maximum process value attained across paths.

2.2.1.10. sdepy.process.psum

	
process.psum(dtype=None, out=None)

	One path process exposing for each time point
the sum of process values across paths.

2.2.1.11. sdepy.process.pmean

	
process.pmean(dtype=None, out=None)

	One path process exposing for each time point
the mean of process values across paths.

2.2.1.12. sdepy.process.pvar

	
process.pvar(dtype=None, out=None, ddof=0)

	One path process exposing for each time point
the variance of process values across paths.

2.2.1.13. sdepy.process.pstd

	
process.pstd(dtype=None, out=None, ddof=0)

	One path process exposing for each time point
the standard deviation of process values across paths.

2.2.1.14. sdepy.process.tmin

	
process.tmin(out=None)

	Constant process exposing for each path the minimum
process value attained along time.

2.2.1.15. sdepy.process.tmax

	
process.tmax(out=None)

	Constant process exposing for each path the maximum
process value attained along time.

2.2.1.16. sdepy.process.tsum

	
process.tsum(dtype=None, out=None)

	Constant process exposing for each path the sum of
process values along time.

2.2.1.17. sdepy.process.tmean

	
process.tmean(dtype=None, out=None)

	Constant process exposing for each path the mean of
process values along time.

2.2.1.18. sdepy.process.tvar

	
process.tvar(dtype=None, out=None, ddof=0)

	Constant process exposing for each path the variance of
process values along time.

2.2.1.19. sdepy.process.tstd

	
process.tstd(dtype=None, out=None, ddof=0)

	Constant process exposing for each path the standard
deviation of process values along time.

2.2.1.20. sdepy.process.tdiff

	
process.tdiff(dt_exp=0, fwd=True)

	Process increments along the timeline, optionally
weighted by time increments.

	Parameters

	
	dt_expint or float, optional

	Exponent applied to time increment weights.
If 0, returns process increments.
If 1, approximates a time derivative.
If 0.5, approximates realized volatility.

	fwdbool, optional

	If True, the differences are forward-looking

	Returns

	
	qprocess

	If p is a process shaped (N,) + p.vshape + (p.paths,),
with timeline t, p.tdiff(dt_exp, fwd) returns
a process q, shaped (N-1,) + p.vshape + (p.paths,)
with values

q[i] = (p[i+1] - p[i])/(t[i+1] - t[i])**dt_exp

If fwd evaluates to True, q[i] is assigned
to time point t[i] (q stores at t[i]
the increments of p looking forwards)
or to t[i+1] otherwise (increments looking backwards).

See also

tder, tint

Notes

if p is a process instance realizing a solution of the SDE
dp(t) = sigma(t)*dw(t) across several paths, then

p.tdiff(dt_exp=0.5).pstd()

is a 1-path process that estimates sigma(t).

2.2.1.21. sdepy.process.tder

	
process.tder()

	Forward looking derivative of the given process,
linearly interpolated between time points.

Shorthand for p.tdiff(dt_exp=1).

See also

tdiff, tint

Notes

p.tder().tint() equals, within rounding errors,
p['t', :-1] - p['t', 0]

2.2.1.22. sdepy.process.tint

	
process.tint()

	Integral of the given process, linearly interpolated
between time points.

See also

tdiff, tder

Notes

p.tin().tder() equals, within rounding errors,
p['t', :-1]

2.2.1.23. sdepy.process.chf

	
process.chf(t=None, u=None)

	Characteristic function of the probability distribution
of process values.

p.chf(t, u) estimates the characteristic function
of interpolated process values p(t) at time(s) t.
p.chf(u) is a shorthand for p.chf(p.t, u) (no interpolation).

	Parameters

	
	tarray-like, optional

	Time points at which to compute the characteristic function.
If omitted or None, the entire process timeline is used.

	uarray-like, mandatory

	Values at which to evaluate the characteristic function.

	Returns

	
	array

	Returns an array, with shape t.shape + u.shape + vshape,
where vshape is the shape of values of the calling
process p, containing the average across paths of
exp(1j*u*p(t)).

2.2.1.24. sdepy.process.cdf

	
process.cdf(t=None, x=None)

	Cumulative probability distribution function of process values.

p.cdf(t, x) estimates the cumulative probability distribution
function of interpolated process values p(t) at time(s) t.
p.cdf(x) is a shorthand for p.cdf(p.t, x) (no interpolation).

	Parameters

	
	tarray-like, optional

	Time points along the process timeline. If omitted or None, the
entire process timeline is used.

	xarray-like, mandatory

	Values at which to evaluate the cumulative probability
distribution function.

	Returns

	
	array

	Returns an array, with shape t.shape + x.shape + vshape,
where vshape is the shape of the values of the calling
process p, containing the average across paths of
1 if p(t) <= x else 0.

2.2.2. sdepy.montecarlo

	
class sdepy.montecarlo(sample=None, axis=-1, bins=100, range=None, use='all', dtype=None, ctype=<class 'numpy.int64'>)

	Summary statistics of Monte Carlo simulations.

Compute, store and cumulate results of Monte Carlo simulations
across multiple runs. Cumulated results include mean, standard deviation,
standard error, skewness, kurtosis, and 1d-histograms of the distribution
of outcomes. Probability distribution function estimates are provided,
based on the cumulated histograms.

	Parameters

	
	samplearray-like, optional

	Initial data set to be summarized.
If None, an empty instance is provided, initialized with
the given parameters.

	axisinteger, optional

	Axis of the given sample enumerating single data points
(paths, or different realizations of a simulated process or event).
Defaults to the last axis of the sample.

	use{‘all’, ‘even’, ‘odd’}, optional

	If 'all' (default), the data set is processed as is.
If 'even' or 'odd', the sample x is assumed to consist
of antithetic values along the specified axis,
assumed of even size 2*N, where x[0], x[1], ...
is antithetic respectively to x[N], x[N+1],
Summary operations are then applied to a sample of size N
consisting of the half-sum ('even') or half-difference ('odd')
of antithetic values.

	binsarray-like, or int, or str, optional

	Bins used to evaluate the counts’ cumulated distribution are computed,
against the first data set encountered, according
to the bins parameter:

	If int or str, it dictates the number of bins or their
determination method, as passed to numpy.histogram
when processing the first sample.

	If array-like, overrides range, setting explicit bins’
boundaries, so that bins[i][j] is the lower bound
of the j-th bin used for the distribution of the
i-th component of data points.

	If None, no distribution data will be computed.

Defaults to 100.

	range(float, float) or None, optional

	Bins range specification, as passed to numpy.histogram.

	dtypedata-type, optional

	Data type used for cumulating moments. If None, the data-type
of the first sample is used, if of float kind, or float
otherwise.

	ctypedata-type, optional

	Data type used for cumulating histogram counts.
Defaults to numpy.int64.

Notes

The shape of cumulated statistics is set as the shape of the
data points of the first data set processed (shape of the first
sample after summarizing along the paths axis). When cumulating
subsequent samples, broadcasting rules apply.

Indexing can be used to access single values or slices of the
stored data. Given a montecarlo instance a, a[i] is a new
instance referencing statistics of the i-th component of
data summarized in a (no copying).

The first data set encountered fixes the histogram bins.
Points of subsequent data sets that fall outside the bins,
while properly taken into account in summary statistics
(mean, standard error etc.), are ignored when building
cumulated histograms and probability distribution functions.
Their number is accounted for in the outpaths property
and outerr method.

Histograms and distributions, and the related outpaths
and outerr, must be invoked on single-valued montecarlo
instances. For multiple valued simulations, use indexing
to select the value to be addressed (e.g. a[i].histogram()).

	Attributes

	
	paths

	Number of cumulated sample data points (0 for an empty instance).

	vshape

	Shape of cumulated sample data points.

	shape

	Shape of cumulated sample data set, rearranged with averaging axis as last axis.

	outpaths

	Data points fallen outside of the bins’ boundaries.

	m

	Shortcut for the mean method.

	s

	Shortcut for the std method.

	e

	Shortcut for the stderr method.

	stats

	Dictionary of cumulated statistics.

	h

	Shortcut for the histogram method.

	dh

	Shortcut for the density_histogram method.

Methods

	update(sample[, axis])

	Add the given sample to the montecarlo simulation.

	mean()

	Mean of cumulated sample data points.

	var()

	Variance of cumulated sample data points.

	std()

	Standard deviation of cumulated sample data points.

	skew()

	Skewness of cumulated sample data points.

	kurtosis()

	Kurtosis of cumulated sample data points.

	stderr()

	Standard error of the mean of cumulated sample data points.

	histogram()

	Distribution of the cumulated sample data, as a counts histogram.

	density_histogram()

	Distribution of the cumulated sample data, as a normalized counts histogram.

	pdf(x[, method, bandwidth, kind])

	Normalized sample probability density function, evaluated at x.

	cdf(x[, method, bandwidth, kind])

	Cumulative sample probability density function, evaluated at x.

	outerr()

	Fraction of cumulated data points fallen outside of the bins’ boundaries.

2.2.2.1. sdepy.montecarlo.update

	
montecarlo.update(sample, axis=-1)

	Add the given sample to the montecarlo simulation.

Combines the given sample data with summary statistics
obtained (if any) from former samples to which the montecarlo
instance was exposed at instantiation and at previous calls
to this method. Updates cumulated statistics and histograms
accordingly.

	Parameters

	
	samplearray-like

	Data set to be summarized.

	axisinteger, optional

	Axis of the given sample enumerating single data points
(paths, or different realizations of a simulated process or event).
Defaults to the last axis of the sample.

2.2.2.2. sdepy.montecarlo.mean

	
montecarlo.mean()

	Mean of cumulated sample data points.

2.2.2.3. sdepy.montecarlo.var

	
montecarlo.var()

	Variance of cumulated sample data points.

2.2.2.4. sdepy.montecarlo.std

	
montecarlo.std()

	Standard deviation of cumulated sample data points.

2.2.2.5. sdepy.montecarlo.skew

	
montecarlo.skew()

	Skewness of cumulated sample data points.

2.2.2.6. sdepy.montecarlo.kurtosis

	
montecarlo.kurtosis()

	Kurtosis of cumulated sample data points.

2.2.2.7. sdepy.montecarlo.stderr

	
montecarlo.stderr()

	Standard error of the mean of cumulated sample data points.

a.stderr() equals a.std()/sqrt(a.paths - 1).

2.2.2.8. sdepy.montecarlo.histogram

	
montecarlo.histogram()

	Distribution of the cumulated sample data, as a counts histogram.

Returns a (counts, bins) tuple of arrays representing the
one-dimensional histogram data of the distribution of cumulated samples
(as returned by numpy.histogram).

2.2.2.9. sdepy.montecarlo.density_histogram

	
montecarlo.density_histogram()

	Distribution of the cumulated sample data, as a normalized counts
histogram.

Returns a (counts, bins) tuple of arrays representing the
one-dimensional density histogram data of the distribution of cumulated
samples (as returned by numpy.histogram, the sum of the counts
times the bins’ widths is 1).

May systematically over-estimate the probability distribution within
the bins’ boundaries if part of the cumulated samples data
(accounted for in the outpaths property and outerr method)
fall outside.

2.2.2.10. sdepy.montecarlo.pdf

	
montecarlo.pdf(x, method='gaussian_kde', bandwidth=1.0, kind='linear')

	Normalized sample probability density function, evaluated at x.

	Parameters

	
	xarray-like

	Values at which to evaluate the pdf.

	method{‘gaussian_kde’, ‘interp’}

	Specifies the method used to estimate the pdf value. One of:
‘gaussian_kde’ (default), smooth Gaussian kernel
density estimate of the probability density function;
‘interp’, interpolation of density histogram values, of the
given kind.

	bandwidthfloat

	The bandwidth of Gaussian kernels is set to bandwidth
times each bin width.

	kindstr

	Interpolation kind for the ‘interp’ method, passed to
scipy.interpolate.intep1d.

	Returns

	
	array

	An estimate of the sample probability density function of the
cumulated sample data, at the given ‘x’ values,
according to the stated method.

Notes

For the ‘gaussian_kde’ method, kernels are computed at bins midpoints,
weighted according to the density histogram counts,
using in each bin a bandwidth set to bandwidth times the bin width.
The resulting pdf:

	Has support on the real line.

	Integrates exactly to 1.

	May not closely track the density histogram counts.

For the ‘interp’ method, the pdf evaluates to
the density histogram counts at each bin midpoint,
and to 0 at the bins boundaries and outside. The resulting pdf:

	Has support within the bins boundaries.

	Is intended to track the density histogram counts.

	Integrates close to, but not exactly equal to, 1.

May systematically overestimate the probability distribution within
the bins’ boundaries if part of the cumulated samples data
(accounted for in the outpaths property and outerr method)
fall above or below the bins boundaries.

2.2.2.11. sdepy.montecarlo.cdf

	
montecarlo.cdf(x, method='gaussian_kde', bandwidth=1.0, kind='linear')

	Cumulative sample probability density function, evaluated at x.

See pdf method documentation.

Notes

For the ‘gaussian_kde’ method, the integral of the Gaussian kernels
is expressed in terms of scipy.special.erf, and coincides with
the integral of the pdf computed with the same method.

	For the ‘interp’ method, the cdf evaluates as follows:

	
	At bin endpoints, to the cumulated density histogram values
weighed by the bins width.

	Below the bins boundaries, to 0.

	Above the bins boundaries, to 1.

It is close to, but not exactly equal to, the integral of the pdf
computed with the same method.

2.2.2.12. sdepy.montecarlo.outerr

	
montecarlo.outerr()

	Fraction of cumulated data points fallen outside
of the bins’ boundaries.

2.3.1. sdepy.source

	
class sdepy.source(*, paths=1, vshape=(), dtype=None)

	Base class for stochasticity sources.

	Parameters

	
	pathsint

	Number of paths (last dimension) of the source realizations.

	vshapetuple of int

	Shape of source values.

	dtypedata-type

	Data type of source values. Defaults to None.

	Returns

	
	array

	Once instantiated as dz, dz(t, dt) returns a random realization
of the stochasticity source increments from time t
to time t + dt, with shape (t + dt).shape + vshape + (paths,).
For sources with memory (true_source class and subclasses),
dz(t) returns the realized value at time t of the source
process, according to initial conditions set at instantiation.
The definition of source specific parameters, and computation of
actual source realizations, are delegated to subclasses.
Defaults to an array of numpy.nan.

Notes

Any callable object dz(t, dt), with attributes paths and
vshape, returning arrays broadcastable to shape
t_shape + vshape + (paths,), where t_shape is the shape
of t and/or dt, complies with the source protocol.
Such object may be passed to any of the process realization classes,
to be used as a stochasticity source in integrating or computing
the relevant SDE solution. process instances, in particular,
may be used as stochasticity sources.

When calling dz(t, dt), t and/or dt can take any shape.

	Attributes

	
	size

	Returns the number of stored scalar values from previous evaluations, or 0 for sources without memory.

	t

	Returns a copy of the time points at which source values have been stored from previous evaluations, as an array, or an empty array for sources without memory.

Methods

	__call__(t[, dt])

	Realization of stochasticity source values or increments.

2.3.1.1. sdepy.source.__call__

	
source.__call__(t, dt=None)

	Realization of stochasticity source values or increments.

2.3.2. sdepy.wiener_source

	
class sdepy.wiener_source(*, paths=1, vshape=(), dtype=None, corr=None, rho=None)

	dw, a source of standard Wiener process (Brownian motion) increments.

	Parameters

	
	pathsint

	Number of paths (last dimension) of the source realizations.

	vshapetuple of int

	Shape of source values.

	dtypedata-type

	Data type of source values. Defaults to None.

	corrarray-like, or callable, or None

	Correlation matrix of the standard Wiener process increments,
possibly time-dependent, or None for no correlations,
or for correlations specified by the rho parameter.
If not None, overrides rho.
If corr is a square matrix of shape (M, M),
or callable with corr(t) evaluating to such matrix,
the last dimension of the source values must be of size M
(vshape[-1] == M), and increments along
the last axis of the source values will be correlated accordingly.

	rhoarray-like, or callable, or None

	Correlations of the standard Wiener process increments,
possibly time-dependent, or None for no correlations.
If rho is scalar, or callable with rho(t) evaluating
to a scalar, M=2 is assumed, and corr=((1, rho), (rho, 1)).
If rho is a vector of shape (K,), or a callable
with rho(t) evaluating to such vector, M=2*K is assumed,
and the M source values along the last vshape dimension
are correlated so that rho[i] correlates the i-th and
K+i-th values, other correlations being zero
(corr = array((I, R), (R, I)) where I = numpy.eye(K) and
R = numpy.diag(rho)).

	Returns

	
	array

	Once instantiated as dw, dw(t, dt) returns a random realization
of standard Wiener process increments from time t
to time t + dt, with shape (t + dt).shape + vshape + (paths,).
The increments are normal variates with mean 0, either independent
with standard deviation sqrt(dt), or correlated with
covariance matrix corr*dt, or corr(t + dt/2)*dt
(the latter approximates the integral of corr(t) from t
to t + dt).

See also

source

Notes

Realizations across different t and/or dt array elements,
and/or across different paths, and/or along axes of the source values
other than the last axis of vshape, are independent.
corr should be a correlation matrix with unit diagonal elements
and off-diagonal correlation coefficients, not a covariance matrix.

corr and rho values with a trailing one-dimensional paths axis
are accepted, of shape (M, M, 1) or (M/2, 1) respectively.
This last axis is ignored: this allows for deterministic process
instances (single path processes) to be passed as valid corr or
rho values. Path dependent corr and rho are not supported.

For time-dependent correlations, dw(t, dt) approximates the increments
of a process w(t) obeying the SDE dw(t) = corr(t)*dz(t),
where z(t) are standard uncorrelated Wiener processes.

	Attributes

	
	corrarray, or callable

	Stores the correlation matrix used computing increments. May expose
either a reference to corr, if provided explicitly, or an
appropriate object, in case rho was specified.

Methods

	__call__(t, dt)

	See wiener_source class documentation.

2.3.2.1. sdepy.wiener_source.__call__

	
wiener_source.__call__(t, dt)

	See wiener_source class documentation.

2.3.3. sdepy.poisson_source

	
class sdepy.poisson_source(*, paths=1, vshape=(), dtype=<class 'int'>, lam=1.0)

	dn, a source of Poisson process increments.

	Parameters

	
	pathsint

	Number of paths (last dimension) of the source realizations.

	vshapetuple of int

	Shape of source values.

	dtypedata-type

	Data type of source values. Defaults to int.

	lamarray-like, or callable

	Intensity of the Poisson process, possibly time-dependent.
Should be an array of non-negative values, broadcastable to shape
vshape + (paths,), or a callable with lam(t) evaluating
to such array.

	Returns

	
	array

	Once instantiated as dn, dn(t, dt) returns a random
realization of Poisson process increments from time t to time
t + dt, with shape (t + dt).shape + vshape + (paths,).
The increments are independent Poisson variates with mean
lam*dt, or lam(t + dt/2)*dt (the latter approximates
the integral of lam(t) from t to t + dt).

See also

source

	Attributes

	
	size

	Returns the number of stored scalar values from previous evaluations, or 0 for sources without memory.

	t

	Returns a copy of the time points at which source values have been stored from previous evaluations, as an array, or an empty array for sources without memory.

Methods

	__call__(t, dt)

	See poisson_source class documentation.

2.3.3.1. sdepy.poisson_source.__call__

	
poisson_source.__call__(t, dt)

	See poisson_source class documentation.

2.3.4. sdepy.cpoisson_source

	
class sdepy.cpoisson_source(*, paths=1, vshape=(), dtype=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	dj, a source of compound Poisson process increments (jumps).

	Parameters

	
	pathsint

	Number of paths (last dimension) of the source realizations.

	vshapetuple of int

	Shape of source values.

	dtypedata-type

	Data type of source values. Defaults to None.

	dnsource or source class, optional

	If given, dn is used as the underlying source of Poisson process
increments, overriding the ptype and lam parameters.

	ptypedata-type

	Data type of Poisson process increments. Defaults to int.

	lamarray-like, or callable

	Intensity of the underlying Poisson process, possibly time-dependent.
See poisson_source class documentation.

	ydistribution, or callable, or None

	Distribution of random variates to be compounded with the
Poisson process increments, possibly time-dependent.
May be any scipy.stats distribution instance,
or any object exposing an rvs(shape) method
to generate independent random variates of the given shape,
or a callable with y(t) evaluating to such object.
The following preset distributions may be specified, possibly
with time-varying parameters:

	y=norm_rv(a, b) - normal distribution with mean a
and standard deviation b.

	y=uniform_rv(a, b) - uniform distribution
between a and b.

	y=exp_rv(a) - exponential distribution with scale a.

	y=double_exp_rv(a, b, pa) - double exponential distribution,
with scale a with probability pa, and -b
with probability 1 - pa.

where a, b, pa are array-like with values in the appropriate
domains, broadcastable to a shape vshape + (paths,),
or callables with a(t), b(t), pa(t) evaluating to such arrays.
If None, defaults to uniform_rv(a=0, b=1).

	Returns

	
	array

	Once instantiated as dj, dj(t, dt) returns a random realization
of compound Poisson process increments from time t to time
t + dt, with shape (t + dt).shape + vshape + (paths,).
The increments are independent compound Poisson variates, consisting of
the sum of N independent y or y(t + dt/2) variates,
where N is a Poisson variate with mean lam*dt,
or lam(t + dt/2)*dt (approximates each variate being taken
from y at the time of the corresponding Poisson process event).

See also

poisson_source, source, norm_rv, uniform_rv, exp_rv, double_exp_rv, rvmap

Notes

Preset distributions norm_rv, uniform_rv, exp_rv, double_exp_rv
behave as follows:

	If all parameters are array-like, return an object with an
rvs method as described above, and with methods
mean, std, var, exp_mean with signature (), returning
the mean, standard deviation, variance and mean of the exponential
of the random variate.

	If any parameter is callable, returns a callable y such
that y(t) evaluates to the corresponding distribution
with parameter values at time t.

To compound the Poisson process increments with a function f(z),
or time-dependent function f(t, z), of a given random variate z,
one can pass y=rvmap(f, z) to compound_poisson.

[ToDo: make a note on martingale correction using exp_mean]

	Attributes

	
	ydistribution, or callable

	Stores the distribution used computing the Poisson process increments.

	dn_valuearray of int

	After each realization, this attribute stores the underlying
Poisson process increments.

	y_valuelist of array

	After each realization, this attribute stores the underlying
y random variates.

Methods

	__call__(t, dt)

	See cpoisson_source class documentation.

2.3.4.1. sdepy.cpoisson_source.__call__

	
cpoisson_source.__call__(t, dt)

	See cpoisson_source class documentation.

2.3.5. sdepy.odd_wiener_source

	
class sdepy.odd_wiener_source(*, paths=2, vshape=(), **args)

	dw, a source of standard Wiener process (Brownian motion) increments with
antithetic paths exposing opposite increments (averages exactly to 0
across paths).

Once instantiated as dw with paths=2*K paths, x = dw(t, dt)
consists of leading K paths with independent increments,
and trailing K paths consisting of a copy of the leading paths
with sign reversed (x[..., i] == -x[..., K + i]).

See also

wiener_source

	Attributes

	
	size

	Returns the number of stored scalar values from previous evaluations, or 0 for sources without memory.

	t

	Returns a copy of the time points at which source values have been stored from previous evaluations, as an array, or an empty array for sources without memory.

Methods

	__call__

	

2.3.6. sdepy.even_poisson_source

	
class sdepy.even_poisson_source(*, paths=2, vshape=(), **args)

	dn, a source of Poisson process increments with antithetic
paths exposing identical increments.

Once instantiated as dn with paths=2*K paths, x = dn(t, dt)
consists of leading K paths with independent increments,
and trailing K paths consisting of a copy of the leading paths:
(x[..., i] == x[..., K + i]).
Intended to be used together with odd_wiener_source to generate
antithetic paths in jump-diffusion processes.

See also

source, poisson_source

	Attributes

	
	size

	Returns the number of stored scalar values from previous evaluations, or 0 for sources without memory.

	t

	Returns a copy of the time points at which source values have been stored from previous evaluations, as an array, or an empty array for sources without memory.

Methods

	__call__

	

2.3.7. sdepy.even_cpoisson_source

	
class sdepy.even_cpoisson_source(*, paths=2, vshape=(), **args)

	dj, a source of compound Poisson process increments (jumps) with antithetic
paths exposing identical increments.

Once instantiated as dj with paths=2*K paths, x = dj(t, dt)
consists of leading K paths with independent increments,
and trailing K paths consisting of a copy of the leading paths:
x[..., i] equals x[..., K + i].
Intended to be used together with odd_wiener_source to generate
antithetic paths in jump-diffusion processes.

See also

source, cpoisson_source

	Attributes

	
	size

	Returns the number of stored scalar values from previous evaluations, or 0 for sources without memory.

	t

	Returns a copy of the time points at which source values have been stored from previous evaluations, as an array, or an empty array for sources without memory.

Methods

	__call__

	

2.3.8. sdepy.true_source

	
class sdepy.true_source(*, paths=1, vshape=(), dtype=None, rtol='max', t0=0.0, z0=0.0)

	Base class for stochasticity sources with memory.

	Parameters

	
	paths, vshape, dtype

	See source class documentation.

	rtolfloat, or ‘max’

	relative tolerance used in assessing the coincidence
of t with the time of a previously stored realization
of the source.
If set to max, the resolution of the float type is used.

	t0, z0array-like

	z0 is the initial value of the source at time t0.

	Returns

	
	array

	Once instantiated as dz, dz(t) returns the realized
value at time t of the source process, such that
dz(t0) = z0, with shape (t + dt).shape + vshape + (paths,),
as specified by subclasses.
dz(t, dt) returns dz(t + dt) - dz(t).
New values of dz(t) should follow a probability distribution
conditional on values realized in previous calls.
Defaults to an array of numpy.nan.

See also

source

	Attributes

	
	size

	Returns the number of stored scalar values from previous evaluations, or 0 for sources without memory.

	t

	Returns a copy of the time points at which source values have been stored from previous evaluations, as an array, or an empty array for sources without memory.

Methods

	__getitem__(index)

	Reference to a sub-array or element of the source values sharing the same memory of past realizations.

	new_inside(z1, z2, t1, t2, s)

	Generate a new process increment, at a time s between those of formerly realized values.

	new_outside(z, t, s)

	Generate a new process increment, at a time s above or below those of formerly realized values.

2.3.8.1. sdepy.true_source.new_inside

	
true_source.new_inside(z1, z2, t1, t2, s)

	Generate a new process increment, at a time s between
those of formerly realized values.

	Parameters

	
	z1, z2array

	Formerly realized values of the source at times t1, t2
respectively.

	t1, t2float

	t1, t2 are the times of former realizations closest to
s, with t1 < s < t2.

	Returns

	
	array

	Value of the source at s, conditional on formerly
realized value z1 at t1 and z2 at t2.
Should be defined by subclasses. Defaults to an array
of numpy.nan.

2.3.8.2. sdepy.true_source.new_outside

	
true_source.new_outside(z, t, s)

	Generate a new process increment, at a time s above or below
those of formerly realized values.

	Parameters

	
	zarray

	Formerly realized value of the source at time t.

	t, sfloat

	t is the highest (lowest) time of former realizations,
and s is above (below) t.

	Returns

	
	array

	Value of the source at s, conditional on formerly
realized value z at t. Should be defined by subclasses.
Defaults to an array of numpy.nan.

2.3.9. sdepy.true_wiener_source

	
class sdepy.true_wiener_source(*, paths=1, vshape=(), dtype=None, corr=None, rho=None, rtol='max', t0=0.0, z0=0.0)

	dw, source of standard Wiener process (brownian motion) increments with memory.

	Parameters

	
	paths, vshape, dtype, corr, rho

	
See wiener_source class documentation.

	rtol, t0, z0

	See true_source class documentation.

	Returns

	
	array

	Once instantiated as dw, dw(t) returns z0
plus a realization of the standard Wiener process increment
from time t0 to t, and dw(t, dt) returns
dw(t + dt) - dw(t).
The returned values follow a probability distribution conditional
on values realized in previous calls.

Notes

For time-dependent correlations the result is approximate,
mind running a first evaluation on a sequence of consecutive
closely spaced time points in the region of interest.

	Attributes

	
	size

	Returns the number of stored scalar values from previous evaluations, or 0 for sources without memory.

	t

	Returns a copy of the time points at which source values have been stored from previous evaluations, as an array, or an empty array for sources without memory.

Methods

	See source and true_source methods.

	

2.3.10. sdepy.true_poisson_source

	
class sdepy.true_poisson_source(*, paths=1, vshape=(), dtype=<class 'int'>, lam=1.0, rtol='max', t0=0.0, z0=0)

	dn, a source of Poisson process increments with memory.

	Parameters

	
	paths, vshape, dtype, lam

	See poisson_source class documentation.

	rtol, t0, z0

	See true_source class documentation.

	Returns

	
	array

	Once instantiated as dn, dn(t) returns z0 plus
a realization of Poisson process increments from time t0 to t,
and dn(t, dt) returns dn(t + dt) - dn(t).
The returned values follow a probability distribution conditional
on the realized values in previous calls.

See also

source, poisson_source, true_source

Notes

For time-dependent intensity lam(t) the result is approximate,
mind running a first evaluation on a sequence of consecutive
closely spaced time points in the region of interest.

	Attributes

	
	size

	Returns the number of stored scalar values from previous evaluations, or 0 for sources without memory.

	t

	Returns a copy of the time points at which source values have been stored from previous evaluations, as an array, or an empty array for sources without memory.

Methods

	See ``source`` and ``true_source`` methods.

	

2.3.11. sdepy.true_cpoisson_source

	
class sdepy.true_cpoisson_source(*, paths=1, vshape=(), dtype=None, rtol='max', t0=0.0, z0=0.0, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	dj, a source of compound Poisson process increments (jumps) with memory.

	Parameters

	
	paths, vshape, dtype, dn, ptype, lam, y

	See cpoisson_source class documentation.

	rtol, t0, z0

	See true_source class documentation.

	Returns

	
	array

	Once instantiated as dj, dj(t) returns z0 plus
a realization of compound Poisson process increments from time t0
to t, and dj(t, dt) returns dj(t + dt) - dj(t).
The returned values follow a probability distribution conditional
on the realized values in previous calls.

See also

source, cpoisson_source, true_source

Notes

For time-dependent intensity lam(t) and compounding random
variable y(t) the result is approximate,
mind running a first evaluation on a sequence of consecutive
closely spaced time points in the region of interest.

	Attributes

	
	size

	Returns the number of stored scalar values from previous evaluations, or 0 for sources without memory.

	t

	Returns a copy of the time points at which source values have been stored from previous evaluations, as an array, or an empty array for sources without memory.

Methods

	See ``source`` and ``true_source`` methods.

	

2.3.12. sdepy.norm_rv

	
sdepy.norm_rv(a=0, b=1)

	Normal distribution with mean a and standard deviation b, possibly
time-dependent.

Wraps scipy.stats.norm(loc=a, scale=b).

See also

cpoisson_source

2.3.13. sdepy.uniform_rv

	
sdepy.uniform_rv(a=0, b=1)

	Uniform distribution between a and b, possibly time-dependent.

Wraps scipy.stats.uniform(loc=a, scale=b-a).

See also

cpoisson_source

2.3.14. sdepy.exp_rv

	
sdepy.exp_rv(a=1)

	Exponential distribution with scale a, possibly time-dependent.

Wraps scipy.stats.expon(scale=a).
The probability distribution function is:

	if a > 0, pdf(x) = a*exp(-a*x), with support in [0, inf)

	if a < 0, pdf(x) = -a*exp(a*x), with support in (-inf, 0]

See also

cpoisson_source

2.3.15. sdepy.double_exp_rv

	
sdepy.double_exp_rv(a=1, b=1, pa=0.5)

	Double exponential distribution, with scale a with
probability pa, and -b with probability (1 - pa), possibly
time-dependent.

	Double exponential distribution, with probability distribution

	
	for x in [0, inf), pdf(x) = pa*exp(-a*x)*a

	for x in (-inf, 0), pdf(x) = (1-pa)*exp(b*x)*b

where a and b are positive and pa is in [0, 1].

See also

cpoisson_source

2.3.16. sdepy.rvmap

	
sdepy.rvmap(f, y)

	Map f to random variates of distribution y, possibly time-dependent.

	Parameters

	
	fcallable

	Callable with signature f(y), or
f(t, y) or f(s, y), to be mapped to the
random variates of y or y(t)

	ydistribution, or callable

	Distribution, possibly time-dependent, as accepted by
cpoisson_source.

	Returns

	
	new_yDistribution, or callable

	An object with and rvs(shape) method, or a callable
with new_y(t) evaluating to such object, as accepted
by cpoisson_source.
new_y.rvs(shape), or new_y(t).rvs(shape), returns
f(y.rvs(shape)), or f([t,] y(t).rvs(shape).

See also

cpoisson_source, norm_rv, uniform_rv, exp_rv, double_exp_rv

Notes

new_y does not provide any mean, std, var, exp_mean method.

To be recognized as time-dependent, f should have its first
parameter named t or s.

2.4.1. sdepy.paths_generator

	
class sdepy.paths_generator(*, paths=1, xshape=(), wshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True)

	Step by step generation of stochastic simulations across multiple
paths, intended for subclassing.

Given a number of requested paths, shapes and output timeline,
encapsulates the low level tasks of memory allocation and step by step
iteration along the timeline.

The definition of the target iteration steps (pace method),
initialization (begin method),
computation of next step (next method),
storing results at points on the requested timeline (store method),
cleaning up (end method) and
evaluation of a final result to be returned (exit method),
are delegated to subclasses.

Instances are callables with signature (timeline) that iterate
subclass methods along the given timeline, using the configuration
set out at instantiation.

	Parameters

	
	pathsint

	Size of last axis of the allocated arrays
(number of paths of the simulation).

	xshapeint or tuple of int

	Shape of values that will be stored at each point
of the output timeline.

	wshapeint or tuple of int

	Shape of working space used for step by step iteration.

	dtypedata-type

	Data-type of the output and working space.

	stepsiterable, or int, or None

	Specification of the time points to be touched during the simulation
(as defined by the pace method). Default behaviour is:

	if None, the simulated steps coincide with the timeline;

	if int, the simulated steps touch all timeline points,
as well as steps equally spaced points between the minimum
and maximum point in the timeline;

	if iterable, the simulated steps touch all timeline points,
as well as all values in steps between the minimum and maximum
points in the timeline.

	i0int

	Index along the timeline at which the simulation starts. The timeline
is assumed to be in ascending order. The simulation is performed
backwards from timeline[i0] to timeline[0], and forwards
from timeline[i0] to timeline[-1].

	infodict, or None

	Diagnostic information about the simulation is stored in this
dictionary and is accessible as the info attribute.
If None, a new empty dict is used.

	getinfobool

	If True (default), records basic information in the info
attribute about the last performed simulation (if the simulation is
both backwards and forwards, the information pertains to the forwards
part only). Used by subclasses to enable/disable diagnostic
info generation.

	Returns

	
	simulation results

	Once instantiated as p, p(timeline) runs the simulation
along the given timeline, based on parameters of instantiation,
returning results as determined by subclass methods.
Defaults to (tt, xx) where tt is a reference to timeline
and xx is an array of numpy.nan of the requested shape.

See also

integrator, SDE, SDEs

Notes

All initialization parameters are stored as attributes of the same name,
and may be accessed by subclasses.

During the simulation, a itervars attribute is present,
pointing to a dictionary that contains the following items,
to be used by subclass methods (double letters refer to values
along the entire timeline, single letters refer to single time points):

	steps_tt : an array of all time points to be touched
by the simulation. It consolidates the output timeline
and the time points to be touched, as specified by steps.

	tt: the output timeline.

	xx: simulation output, an array of shape
tt.shape + xshape + (paths,). xx[i] is the simulated value
at time tt[i].

	sw: working space for time points, an array
of shape (depth,).

	xw: working space for paths generation, an array of objects
of shape (depth,), where each of xw[k] is an array
of shape wshape + (paths,).

	reverse : True if the simulation runs backwards,
False otherwise. If True, steps_tt and tt are
in descending order.

	i : such that tt[i] is the next point
along the timeline that will be reached (when invoking next),
or the point that was just reached (when invoking store).

	Note that:

	
	sw and xw are rolled at each iteration: subclass methods
should not rely on storing references to their elements
across iterations.

	xw[k][...] = value broadcasts value into the allocated
memory of xw[k] (this is usually what you want),
xw[k] = value stores value, as an object, in xw[k]
(avoid).

	xx and xw[k] are initialized to arrays filled
with numpy.nan.

	Attributes

	
	depthint

	Number of time points to be stored in the working space. Defaults to 2.

Methods

	__call__(timeline)

	Run the simulation along the given timeline.

	pace(timeline)

	Target integration steps for the current integration.

	begin()

	Set initial conditions.

	next()

	Numerical simulation step.

	store(i, k)

	Store the current integration step into the integration output.

	end()

	End of iteration optional tasks.

	exit(tt, xx)

	Final tasks and construction of the output value(s).

2.4.1.1. sdepy.paths_generator.__call__

	
paths_generator.__call__(timeline)

	Run the simulation along the given timeline.

	Parameters

	
	timelinearray-like

	A one dimensional array of strictly increasing numbers,
defining the timeline of the simulation.

	Returns

	
	Simulation results, as specified by subclass methods.

	

2.4.1.2. sdepy.paths_generator.pace

	
paths_generator.pace(timeline)

	Target integration steps for the current integration.

	Parameters

	
	timelinearray

	Requested simulation timeline, cast as an array of float data-type.

	Returns

	
	array

	Target time points to be touched during the simulation
(typically, more thinly spaced than the output time
points in timeline, based on the steps parameter),
to be merged with timeline.

	May be overridden by subclasses. For default behaviour,

	

	see paths_generator class documentation.

	

2.4.1.3. sdepy.paths_generator.begin

	
paths_generator.begin()

	Set initial conditions.

Given the time points sw[0], ..., sw[depth - 2],
should define and store in the working space
the corresponding initial values xw[0], ..., xw[depth - 2].
Note that when begin gets called,
sw[depth - 1] and xw[depth - 1] are undefined and will be
respectively set, and computed, at the first iteration.

Notes

It is called once for each backwards and forwards simulation,
after memory allocation and before starting the iteration along
the time points in steps_tt.

Outline of expected code for depth=2:

access itervars
iv = self.itervars
sw, xw = iv['sw'], iv['xw']

this is the initial time, taken from the
simulation timeline
t0 = sw[0]
assert t0 == iv['steps_tt'][0] == iv['tt'][0]

store the initial condition
xw[0][...] = 1.

Must be provided by subclasses.

2.4.1.4. sdepy.paths_generator.next

	
paths_generator.next()

	Numerical simulation step.

Given the points sw[0], ..., sw[depth - 2]
and the corresponding values xw[0], ..., xw[depth - 2],
should:

	Optionally modify the target next time point sw[depth - 1],
to a value between sw[depth - 2] and sw[depth - 1]
(this allows for adaptive time steps, with the constraint of
touching all point specified by the output timeline and the
steps parameter).

	Compute the corresponding value xw[depth - 1]

Notes

It is called once per iteration step.

Outline of expected code for depth=2:

access itervars
iv = self.itervars
sw, xw = iv['sw'], iv['xw']

get starting values, and time step to be taken
s0, x0 = sw[0], xw[0]
ds = sw[1] - sw[0]

compute and store the next step
xw[1][...] = x0 + ds

Must be provided by subclasses.

2.4.1.5. sdepy.paths_generator.store

	
paths_generator.store(i, k)

	Store the current integration step into the integration output.

Should take the k-th value in the working space xw,
transform it if need be, and store it as the output
xx[i] at the output time point tt[i].

	Parameters

	
	iint

	Index of the output timeline point to set as output.

	kint

	Index of the working space point to use as input.

Notes

It is called initially to store the initial values that belong
to the output timeline, among those put into the working space
by begin, and later during the iteration, each time the simulation
touches a point on the output timeline.

Outline of expected code for xshape == wshape and
an exponentiation transformation:

access itervars
iv = self.itervars
sw, xw = iv['sw'], iv['xw']
xx = iv['xx']

this is the current time, also found
along the output timeline
s = sw[k]
assert s == iv['tt'][i]

transform and store
np.exp(xw[k], out=xx[i])

Must be provided by subclasses.

2.4.1.6. sdepy.paths_generator.end

	
paths_generator.end()

	End of iteration optional tasks.

It is called once for each backwards and forwards simulation,
once the final point in the output timeline has been reached
and the simulation ends.

After it is called, itervars are deleted.

May be provided by subclasses.

2.4.1.7. sdepy.paths_generator.exit

	
paths_generator.exit(tt, xx)

	Final tasks and construction of the output value(s).

	Parameters

	
	ttarray

	Output timeline. It is the timeline passed to the __call__
method, cast as an array, with its original data-type
(if the data-type is of integer kind, the simulation
is carried out using floats).

	xxarray

	Output values along the timeline, as computed by next
and stored by store methods.

Notes

It is called once, after backwards and/or forwards simulations
have been completed, and its return value is returned.

Default implementation:

return tt, xx

May be provided by subclasses.

2.4.2. sdepy.integrator

	
class sdepy.integrator(*, paths=1, xshape=(), wshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler')

	Step by step numerical integration of Ito Stochastic Differential
Equations (SDEs), intended for subclassing.

For usage, see the SDE class documentation.

This class encapsulates SDE integration methods, and cooperates
with the SDE class, that should always have precedence in
method resolution order. As long as the respective
APIs are complied with, a new integrator stated as an
integrator subclass will interoperate with existing
SDEs (as described by SDE subclasses), and a new SDE
will interoperate with existing integrators.

	Parameters

	
	paths, xshape, wshape, dtype, steps, i0, info, getinfo

	See paths_generator class documentation.

	methodstring

	Integration method. Defaults to 'euler', for the
Euler-Maruyama method (at present, this single method
is supported). It is stored as an attribute of the same name.

	Returns

	
	process

	Once instantiated as p, p(timeline) performs the integration
along the given timeline, based on parameters of instantiation,
returning the resulting process as determined by the cooperating
SDE subclass and the chosen integration method.
Defaults to a process of numpy.nan along the given timeline.

See also

paths_generator, SDE, SDEs

Notes

The equation to be integrated is exposed to the integration
algorithm in a standardized form, via methods A and dZ
delegated to a cooperating SDE class. The latter should take care
of equation parameters, initial conditions, expected paths and shapes,
and should instantiate all necessary stochasticity sources.

The integration method is exposed as the next method to the
paths_generator parent class.

If the getinfo attribute is set to True, at each integration
step the following items are added to the itervars dictionary,
made available to subclasses to track the integration progress:

	last_t: starting time point of the last integration step.

	last_dt: time increment of the last integration step.

	last_x : starting value of the process, at time last_t.

	last_A: dictionary of the last computed values of the SDE
terms, at time last_t.

	last_dZ: dictionary of the last realized SDE stochasticity
source values, cumulated in the interval from last_t
to last_t + last_dt.

	new_x : computed value of the process, at time
last_t + last_dt.

This becomes relevant in case the output timeline is coarse
(e.g. just the initial and final time) but diagnostic information
is needed about all integration steps performed
(e.g., to track how often the process has changed sign, or to
count the number of realized jumps).

Methods

	A(t, x)

	Value of the SDE terms at time t and process value x.

	dZ(t, dt)

	Value of the SDE differentials at time t, for time increment dt.

	next()

	Perform an integration step with the requested method.

	euler_next()

	Euler-Maruyama integration step.

2.4.2.1. sdepy.integrator.A

	
integrator.A(t, x)

	Value of the SDE terms at time t and process value x.

Example of expected code for the SDE dx = (1 - x)*dt + 2*dw(t):

return {
 'dt': (1 - x),
 'dw': 2
 }

The SDE class takes care of casting user-specified
equations into this format.

2.4.2.2. sdepy.integrator.dZ

	
integrator.dZ(t, dt)

	Value of the SDE differentials at time t, for
time increment dt.

Example of expected code for the SDE dx = (1 - x)*dt + 2*dw(t),
where x has two components:

shape = (2, self.paths)
return {
 'dt': dt,
 'dw': wiener_source(vshape=2, paths=self.paths)(0, dt)
 }

The SDE class takes care of instantiating user-specified
stochasticity sources and casting them into this format.

2.4.2.3. sdepy.integrator.next

	
integrator.next()

	Perform an integration step with the requested method.

2.4.2.4. sdepy.integrator.euler_next

	
integrator.euler_next()

	Euler-Maruyama integration step.

2.4.3. sdepy.SDE

	
class sdepy.SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', **args)

	Class representation of a user defined Stochastic Differential
Equation (SDE), intended for subclassing.

This class aims to provide an easy to use and flexible interface,
allowing to specify user-defined SDEs and expose them in a standardized
form to the cooperating integrator class (the latter should
always follow in method resolution order). A minimal
definition of an Ornstein-Uhlenbeck process is as follows:

>>> from sdepy import SDE, integrator
>>> class my_process(SDE, integrator):
... def sde(self, t, x, theta=1., k=1., sigma=1.):
... return {'dt': k*(theta - x), 'dw': sigma}

An SDE is stated as a dictionary, containing for each differential
the value of the corresponding coefficient:

dx = f(t, x)*dt + g(t, x)*dw + h(t, x)*dj

translates to:

{'dt': f(t, x), 'dw': g(t, x), 'dj': h(t, x)}

Instances are callables with signature (timeline) that integrate
the SDE along the given timeline, using the configuration set out in
the instantiation parameters:

>>> P = my_process(x0=1, sigma=0.5, paths=100*1000, steps=100)
>>> x = P(timeline=(0., 0.5, 1.))
>>> x.shape
(3, 100000)

Subclasses can specify or customize:
the equation and its parameters (sde method),
initial conditions and preprocessing (init method and
log attribute), shape of the values to be computed and stored
(shapes method), stochastic differentials appearing in the equation
(sources attribute) and their parameters and initialization (methods
source_dt, source_dw, source_dn, source_dj, or any custom
source_{id} method for a corresponding differential '{id}'
declared in sources and used as a key in sde return values),
optional non array-like parameters (more method), how to store results
at points on the requested timeline (let method), and
postprocessing (result method and log attribute).

	Parameters

	
	pathsint

	Number of paths of the process.

	vshapeint or tuple of int

	Shape of the values of the process.

	dtypedata-type, optional

	Data-type of the process. Defaults to the numpy default.

	stepsiterable, or int, or None

	Specification of the time points to be touched during integration
(as accepted by a cooperating integrator class).
Default behaviour is:

	if None, the simulated steps coincide with the timeline;

	if int, the simulated steps touch all timeline points,
as well as steps equally spaced points between the minimum
and maximum point in the timeline;

	if iterable, the simulated steps touch all timeline points,
as well as all values in steps between the minimum and maximum
points in the timeline.

	i0int

	Index along the timeline at which the integration starts. The timeline
is assumed to be in ascending order. Initial conditions are set
at timeline[i0], the integration is performed
backwards from timeline[i0] to timeline[0], and forwards
from timeline[i0] to timeline[-1].

	infodict, optional

	Diagnostic information about the integration is stored in this
dictionary and is accessible as the info attribute.
Defaults to a new empty dict.

	getinfobool

	If True, subclass methods info_begin, info_next,
info_store, info_end are invoked during integration.
Defaults to True.

	methodstr

	Integration method, as accepted by the integrator
cooperating class.

	**argsSDE-specific parameters

	SDE parameters and initial conditions, as implied by the signature
of sde, init and more methods, and stochasticity sources
parameters, as implied by the signature of source_{id} methods.
Each keyword should be used once (e.g. corr, a source_dw
parameter, cannot be used as the name of a SDE parameter).

	Returns

	
	process

	Once instantiated as p, p(timeline) performs the integration
along the given timeline, based on parameters of instantiation,
and returns the resulting process as defined by subclass methods.
Defaults to a process of numpy.nan along the given timeline.

See also

paths_generator, integrator, SDEs

Notes

Custom stochastic differentials used in the SDE should be recognized,
and treated appropriately, by the chosen integration method. This
may require customization of the next method of the integrator
class.

All named initialization parameters (paths, steps etc.)
are stored as attributes.

	Notes on SDE-specific parameters:

	
	init parameters are converted to arrays via np.asarray.

	sde and source quantitative parameters may be array-like,
or time dependent with signature (t).

	both are converted to arrays via np.asarray, and
for both, their constant value, or values at each time point,
should be broadcastable to a shape wshape + (paths,).

	more parameters undergo no further initialization, before
being made available to the shapes and more methods.

If getinfo is True, the invoked info subclass methods
may initialize and cumulate diagnostic information in items
of the info dictionary, based on read-only access of the
internal variables set during integration by paths_generator
and integrator cooperating classes, as exposed in the itervars
attribute.

	Attributes

	
	sourcesset or dict

	As a class attribute, holds the names of the differentials 'dz'
expected to appear in the equation. As an instance attribute,
sources['dz'] is an object, complying with the source protocol,
that instantiates the differential 'dz' used during integration.
sources['dz'](t, dt) is computed at every step for each
'dz' in sources, as required by the chosen integration method.

	argsdict

	Stores parameters passed as **args upon initialization of the SDE.

	logbool

	If True, the natural logarithm of the initial values set by the
init method is taken as the initial value of the integration,
and the result of the integration is exponentiated back before
serving it to the result method. The sde should expose
the appropriate equation for integrating the logarithm of the
intended process.

Methods

	sde(t, x)

	Stochastic Differential Equation (SDE) to be integrated.

	shapes(vshape)

	Shape of the values to be computed and stored upon integration of the SDE.

	source_dt()

	Setup a source of deterministic increments, to be used as ‘dt’ during integration.

	source_dw([dw, corr, rho])

	Setup a source of standard Wiener process (Brownian motion) increments, to be used as ‘dw’ during integration.

	source_dn([dn, ptype, lam])

	Setup a source of Poisson process increments, to be used as ‘dn’ during integration.

	source_dj([dj, dn, ptype, lam, y])

	Set up a source of compound Poisson process increments (jumps), to be used as ‘dj’ during integration.

	more()

	Further optional non array parameters, and initializations.

	init(t, out_x[, x0])

	Set initial conditions for SDE integration.

	let(t, out_x, x)

	Store the value of the integrated process at time point t belonging to the requested output timeline.

	result(tt, xx)

	Compute the integration output.

	info_begin()

	Optional diagnostic information logging function, called before the integration begins.

	info_next()

	Optional diagnostic information logging function, called after each integration step.

	info_store()

	Optional diagnostic information logging function, called after each invocation of the let method.

	info_end()

	Optional diagnostic information logging function, called after the integration has been completed.

2.4.3.1. sdepy.SDE.sde

	
SDE.sde(t, x)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

2.4.3.2. sdepy.SDE.shapes

	
SDE.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

2.4.3.3. sdepy.SDE.source_dt

	
SDE.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

2.4.3.4. sdepy.SDE.source_dw

	
SDE.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

2.4.3.5. sdepy.SDE.source_dn

	
SDE.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

2.4.3.6. sdepy.SDE.source_dj

	
SDE.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

2.4.3.7. sdepy.SDE.more

	
SDE.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

2.4.3.8. sdepy.SDE.init

	
SDE.init(t, out_x, x0=1.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

2.4.3.9. sdepy.SDE.let

	
SDE.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

2.4.3.10. sdepy.SDE.result

	
SDE.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

2.4.3.11. sdepy.SDE.info_begin

	
SDE.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

2.4.3.12. sdepy.SDE.info_next

	
SDE.info_next()

	Optional diagnostic information logging function,
called after each integration step.

2.4.3.13. sdepy.SDE.info_store

	
SDE.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

2.4.3.14. sdepy.SDE.info_end

	
SDE.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

2.4.4. sdepy.SDEs

	
class sdepy.SDEs(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', **args)

	Class representation of a user defined system of Stochastic Differential
Equations (SDEs), intended for subclassing.

The parent SDE class represents a single SDE, scalar
or multidimensional: by an appropriate choice of the vshape parameter,
and composition of equation values, it suffices to describe
any system of SDEs.

Its SDEs subclass is added for convenience of representation: it allows
to state each equation separately and to retrieve separate processes
as a result. The number of equations must be stated as the q attribute.
The vshape parameter is taken as the common shape of values in each
equation in the system.

A minimal definition of a lognormal process x with stochastic
volatility y is as follows:

>>> from sdepy import SDEs, integrator
>>> class my_process(SDEs, integrator):
... q = 2
... def sde(self, t, x, y, mu=0., sigma=1., xi=1.):
... return ({'dt': mu*x, 'dw': y*x},
... {'dt': 0, 'dw': xi*y})

>>> P = my_process(x0=(1., 2.), xi=0.5, vshape=5,
... paths=100*1000, steps=100,)
>>> x, y = P(timeline=(0., 0.5, 1.))
>>> x.shape, y.shape
((3, 5, 100000), (3, 5, 100000))

See also

SDE, integrator, paths_generator

Notes

By default, the stochasticity sources of each component equation
are realized independently, even if represented in the sde output
by the same key ('dw' in the example above).

The way stochasticity sources are instantiated and dispatched to
each equation, and how correlations of the Wiener source are set
via the corr parameter, depend on the value of the addaxis
attribute:

	If True, source values have shape vshape + (q,),
and the [kk, i] component of source values
is dispatched to the kk component of equation i
(kk is a multiindex spanning shape vshape).
If given, corr must be of shape (q, q) and correlates
corresponding components across equations.

	If addaxis is False (default) and N is the size
of the last axis of vshape, the values of the sources have shape
vshape[:-1] + (N*q,), and the [kk, i*N + h] component
of the source values is dispatched to the [kk, h] component
of equation i (kk is a multiindex spanning
shape vshape[:-1], and h is in range(N)).
If given, corr must be of shape (N*q, N*q), and correlates
all last components of all equations to each other.

After instantiation, stochasticity sources and correlation matrices
may be inspected as follows:

>>> P = my_process(vshape=(), rho=0.5)
>>> P.sources['dw'].vshape
(2,)
>>> P.sources['dw'].corr.shape
(2, 2)
>>> P.sources['dw'].corr[0, 1]
0.5

	Attributes

	
	qint

	Number of equations.

	addaxisbool

	Affects the internal representation of the equations: if True,
a last axis of size q is added to vshape, if False,
components are stacked onto the last axis of vshape.
Defaults to False. It is forced to True if the process
components have scalar values.

Methods

	pack(xs)

	Packs the given arrays (one per equation) into a single array.

	unpack(X)

	Unpacks the given array into multiple arrays (one per equation).

2.4.4.1. sdepy.SDEs.pack

	
SDEs.pack(xs)

	Packs the given arrays (one per equation) into a single array.

	Parameters

	
	xslist of arrays

	List of self.q arrays to be packed according to the addaxis
attribute setting.

	Returns

	
	Xarray

	Array packing the given xs along its second-last dimension
(the last dimension enumerates paths).

2.4.4.2. sdepy.SDEs.unpack

	
SDEs.unpack(X)

	Unpacks the given array into multiple arrays
(one per equation).

	Parameters

	
	Xarray

	Array with a last dimension enumerating paths, and a second
last dimension to be unpacked according to the addaxis
attribute setting.

	Returns

	
	x, y, …list of arrays

	List of self.q arrays, unpacking the given X.

2.4.5. sdepy.integrate

	
sdepy.integrate(sde=None, *, q=None, sources=None, log=False, addaxis=False)

	Decorator for Ito Stochastic Differential Equation (SDE)
integration.

Decorates a function representing the SDE or SDEs into the corresponding
integrator (a subclass of SDE or SDEs and of integrator).

	Parameters

	
	sdefunction

	Function to be wrapped. Its signature and values should be
as expected for the sde method of the SDE or SDEs classes.

	qint

	Number of equations. If None, attempts a test evaluation
of sde to find out.

	sourcesset

	Stochasticity sources used in the equation. If None,
attempts a test evaluation of sde to find out.

	logbool

	Sets the log attribute for the wrapping class.

	addaxisbool

	Sets the addaxis attribute for the wrapping class.

Examples

>>> from sdepy import integrate
>>> @integrate
... def my_process(t, x, theta=1., k=1., sigma=1.):
... return {'dt': k*(theta - x), 'dw': sigma}

>>> P = my_process(x0=1, sigma=0.5, paths=100*1000, steps=100)
>>> x = P(timeline=(0., 0.5, 1.))
>>> x.shape
(3, 100000)

2.5.1. sdepy.wiener_process

	
class sdepy.wiener_process(paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', x0=0., mu=0., sigma=1., dw=None, corr=None, rho=None)

	Wiener process (Brownian motion) with drift.

Generates a process x(t) that solves the following SDE:

dx(t) = mu(t)*dt + sigma(t)*dw(t, dt)

where dw(t, dt) are standard Wiener process increments with
correlation matrix specified by corr(t) or rho(t).
x0, SDE parameters and dw(t, dt) should broadcast to
vshape + (paths,).

	Parameters

	
	paths, vshape, dtype, steps, i0, info, getinfo, method

	See SDE class documentation.

	x0array-like

	Initial condition.

	mu, sigmaarray-like, or callable

	SDE parameters.

	dw, corr, rho

	Specification of stochasticity source of Wiener process increments.
See SDE.source_dw documentation.

	Returns

	
	xprocess

	Once instantiated as p, p(timeline) performs the integration
along the given timeline, based on parameters of instantiation,
and returns the resulting process.

See also

SDE, SDE.source_dw, wiener_source, wiener_SDE

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.2. sdepy.lognorm_process

	
class sdepy.lognorm_process(paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', x0=1., mu=0., sigma=1., dw=None, corr=None, rho=None)

	Lognormal process.

Generates a process x(t) that solves the following SDE:

dx(t) = mu(t)*x(t)*dt + sigma(t)*x(t)*dw(t, dt)

where dw(t, dt) are standard Wiener process increments with
correlation matrix specified by corr(t) or rho(t).
x0, SDE parameters and dw(t, dt) should broadcast to
vshape + (paths,). x0 should be positive.

	Parameters

	
	paths, vshape, dtype, steps, i0, info, getinfo, method

	See SDE class documentation.

	x0array-like

	Initial condition.

	mu, sigmaarray-like, or callable

	SDE parameters.

	dw, corr, rho

	Specification of stochasticity source of Wiener process increments.
See SDE.source_dw documentation.

	Returns

	
	xprocess

	Once instantiated as p, p(timeline) performs the integration
along the given timeline, based on parameters of instantiation,
and returns the resulting process.

See also

SDE, SDE.source_dw, wiener_source, wiener_SDE

Notes

x(t) is obtained via Euler-Maruyama numerical integration of the
following equivalent SDE for a(t) = log(x(t)):

da(t) = (mu(t) - sigma(t)**2/2)*dt + sigma(t)*dw(t, dt)

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.3. sdepy.ornstein_uhlenbeck_process

	
class sdepy.ornstein_uhlenbeck_process(paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', x0=0., theta=0., k=1., sigma=1., dw=None, corr=None, rho=None)

	Ornstein-Uhlenbeck process (mean-reverting Brownian motion).

Generates a process x(t) that solves the following SDE:

dx(t) = k(t)*(theta(t) - x(t))*dt + sigma(t)*dw(t, dt)

where dw(t, dt) are standard Wiener process increments with
correlation matrix specified by corr(t) or rho(t).
x0, SDE parameters and dw(t, dt) should broadcast to
vshape + (paths,).

	Parameters

	
	paths, vshape, dtype, steps, i0, info, getinfo, method

	See SDE class documentation.

	x0array-like

	Initial condition.

	theta, k, sigmaarray-like, or callable

	SDE parameters.

	dw, corr, rho

	Specification of stochasticity source of Wiener process increments.
See SDE.source_dw documentation.

	Returns

	
	xprocess

	Once instantiated as p, p(timeline) performs the integration
along the given timeline, based on parameters of instantiation,
and returns the resulting process.

See also

SDE, SDE.source_dw, wiener_source, ornstein_uhlenbeck_SDE

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.4. sdepy.hull_white_process

	
class sdepy.hull_white_process(paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', factors=1, x0=0., theta=0., k=1., sigma=1., dw=None, corr=None, rho=None)

	F-factors Hull-White process (sum of F correlated mean-reverting Brownian
motions).

Generates a process x(t) that solves the following SDE:

x(t) = y_1(t) + ... + y_F(t)
dy_i(t) = k_i(t)*(theta_i(t) - y_i(t))*dt +
 + sigma_i(t)*dw_i(t, dt)

where dw_i(t, dt) are standard Wiener process increments with
correlations dw_i(t, dt)*dw_j(t, dt) = corr(t)[i, j].
x0, SDE parameters and dw(t, dt) should broadcast to
vshape + (factors, paths).

	Parameters

	
	paths, vshape, dtype, steps, i0, info, getinfo, method

	See SDE class documentation.

	x0array-like

	Initial condition.

	theta, k, sigmaarray-like, or callable

	SDE parameters.

	dw, corr, rho

	Specification of stochasticity source of Wiener process increments.
See SDE.source_dw documentation.

See also

SDE, SDE.source_dw, wiener_source, hull_white_SDE, ornstein_uhlenbeck_process

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.5. sdepy.hull_white_1factor_process

	
class sdepy.hull_white_1factor_process(paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', x0=0., theta=0., k=1., sigma=1., dw=None, corr=None, rho=None)

	1-factor Hull-White process (F=1 Hull-White process with F-index
collapsed to a scalar). See hull_white_process class documentation.

See also

hull_white_process, ornstein_uhlenbeck_process

Notes

Class added for naming convenience. Differs from a hull_white_process
with factors=1 in that the last index of the process parameters has not
been reserved to enumerate factors, and no factors parameter is
present. Synonymous with ornstein_uhlenbeck_process.

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.6. sdepy.cox_ingersoll_ross_process

	
class sdepy.cox_ingersoll_ross_process(paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', x0=1., theta=1., k=1., xi=1., dw=None, corr=None, rho=None)

	Cox-Ingersoll-Ross mean reverting process.

Generates a process x(t) that solves the following SDE:

dx(t) = k(t)*(theta(t) - x(t))*dt + xi(t)*sqrt(x(t))*dw(t, dt)

where dw(t, dt) are standard Wiener process increments with
correlation matrix specified by corr(t) or rho(t).
x0, SDE parameters and dw(t, dt) should broadcast to
vshape + (paths,). x0, theta, k should be positive.

	Parameters

	
	paths, vshape, dtype, steps, i0, info, getinfo, method

	See SDE class documentation.

	x0array-like

	Initial condition.

	theta, k, xiarray-like, or callable

	SDE parameters.

	dw, corr, rho

	Specification of stochasticity source of Wiener process increments.
See SDE.source_dw documentation.

	Returns

	
	xprocess

	Once instantiated as p, p(timeline) performs the integration
along the given timeline, based on parameters of instantiation,
and returns the resulting process.

See also

SDE, SDE.source_dw, wiener_source, cox_ingersoll_ross_SDE

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.7. sdepy.full_heston_process

	
class sdepy.full_heston_process(paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', x0=1., mu=0., sigma=1., y0=1., theta=1., k=1., xi=1., dw=None, corr=None, rho=None)

	Heston stochastic volatility process (returns both process and volatility).

Generates processes x(t) and an y(t) that solve the following SDEs:

dx(t) = mu(t)*x(t)*dt + sigma(t)*x(t)*sqrt(y(t))*dw_x(t, dt),
dy(t) = k(t)*(theta(t) - y(t))*dt + xi(t)*sqrt(y(t))*dw_y(t, dt)

where, if N = vshape[-1] is the size of the last dimension of x(t),
y(t), and dw(t, dt) are standard Wiener process increments
with shape vshape + (2*N, paths):

dw(t)[..., i, :]*dw(t)[..., j, :] = corr(t)[..., i, j]*dt
dw_x(t) = dw(t)[..., :N, :],
dw_y(t) = dw(t)[..., N:, :],

x0 and SDE parameters should broadcast to vshape + (paths,).
dw(t, dt) should broadcast to vshape[:-1] + (2*vshape[-1], paths).
x0, y0, theta, k should be positive.

	Parameters

	
	paths, vshape, dtype, steps, i0, info, getinfo, method

	See SDE class documentation.

	x0, y0array-like

	Initial conditions for x(t) and y(t) processes respectively.

	mu, sigma, theta, k, xiarray-like, or callable

	SDE parameters.

	dw, corr, rho

	Specification of stochasticity source of Wiener process increments.
See SDE.source_dw documentation.

	Returns

	
	x, yprocesses

	Once instantiated as p, p(timeline) performs the integration
along the given timeline, based on parameters of instantiation,
and returns the resulting processes.

See also

SDE, SDE.source_dw, wiener_source, full_heston_SDE

Notes

x(t), y(t) are obtained via Euler-Maruyama numerical integration of the
above SDE for y(t) and of the following equivalent SDE for
a(t) = log(x(t)), handling negative values of y(t) via the
full truncation algorithm [1]:

da(t) = (mu(t) - y(t)*sigma(t)**2/2)*dt + sqrt(y(t))*dw_x(t)

References

	1(1,2)

	Andersen L 2007, Efficient Simulation of the Heston
Stochastic Volatility Model
(available at: https://ssrn.com/abstract=946405 or
http://dx.doi.org/10.2139/ssrn.946405)

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.8. sdepy.heston_process

	
class sdepy.heston_process(paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', x0=1., mu=0., sigma=1., y0=1., theta=1., k=1., xi=1., dw=None, corr=None, rho=None)

	Heston stochastic volatility process (stores and returns process only).

Generates a process as in full_heston_process (see its documentation),
storing and returning the x(t) component only.

	Parameters

	
	paths, vshape, dtype, steps, i0, info, getinfo, method

	See SDE class documentation.

	x0, mu, sigma, y0, theta, k, xi, dw, corr, rho

	See full_heston_process class documentation.

	Returns

	
	xprocess

	Once instantiated as p, p(timeline) performs the integration
along the given timeline, based on parameters of instantiation,
and returns the resulting process.

See also

full_heston_process

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.9. sdepy.jumpdiff_process

	
class sdepy.jumpdiff_process(paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', x0=1., mu=0., sigma=1., dw=None, corr=None, rho=None, dj=None, dn=None, ptype=int, lam=1., y=None)

	Jump-diffusion process (lognormal process with compound Poisson
logarithmic jumps).

Generates a process x(t) that solves the following SDE
(see [1]):

dx(t) = mu(t)*x(t)*dt + sigma(t)*x(t)*dw(t, dt) + x(t)*dj(t, dt)

where dw(t, dt) are standard Wiener process increments with
correlation matrix specified by corr(t) or rho(t), and
dj(t, dt) are increments of a Poisson process
with intensity lam(t), compounded with random variates
distributed as exp(y(t)) - 1.

	Parameters

	
	paths, vshape, dtype, steps, i0, info, getinfo, method

	See SDE class documentation.

	x0array-like

	Initial condition.

	mu, sigmaarray-like, or callable

	SDE parameters.

	dw, corr, rho

	Specification of stochasticity source of Wiener process increments.
See SDE.source_dw documentation.

	dj, dn, ptype, lam, y

	Specification of stochasticity source of compound Poisson process
increments. See SDE.source_dj documentation.

See also

SDE, SDE.source_dw, SDE.source_dj, wiener_source, cpoisson_source, jumpdiff_SDE

Notes

The drift of the mean value x_mean(t) of x(t) is mu(t) + nu(t),
i.e. dx_mean(t)/dt = x_mean(t)*(mu(t) + nu(t)), where:

nu(t) = lam(t)*(y_exp_mean(t) - 1)
y_exp_mean(t) = average of exp(y(t))

x(t) is obtained via Euler-Maruyama numerical integration of the
following equivalent SDE for a(t) = log(x(t)):

da(t) = (mu(t) - sigma(t)**2/2)*dt + x(t)*sigma(t)*dw(t, dt)
 + x(t)*dh(t, dt)

where dh(t, dt) are increments of a Poisson process with
intensity lam(t) compounded with random variates distributed
as y(t).

References

	1(1,2)

	Tankov P Voltchkova E 2009, Jump-diffusion models: a practitioner’s
guide, Banque et Marches, No. 99, March-April 2009
(available at:
http://www.proba.jussieu.fr/pageperso/tankov/tankov_voltchkova.pdf)

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.10. sdepy.merton_jumpdiff_process

	
class sdepy.merton_jumpdiff_process(paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', x0=1., mu=0., sigma=1., dw=None, corr=None, rho=None, dj=None, dn=None, ptype=int, lam=1., a=0., b=1.)

	Merton jump-diffusion process (jump-diffusion process with normal jump size
distribution).

Same as jumpdiff_process, where the y parameter
is specialized to norm_rv(a, b), a normal variate with mean a(t)
and standard deviation b(t).

See also

jumpdiff_process, norm_rv

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.11. sdepy.kou_jumpdiff_process

	
class sdepy.kou_jumpdiff_process(paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', x0=1., mu=0., sigma=1., dw=None, corr=None, rho=None, dj=None, dn=None, ptype=int, lam=1., a=0.5, b=0.5, pa=0.5)

	Double exponential (Kou) jump-diffusion process
(jump-diffusion process with double exponential
jump size distribution).

Same as jumpdiff_process, where the y parameter
is specialized to double_exp_rv(a, b, pa), a double exponential variate
with scale a(t) with probability pa(t), and
-b(t) with probability (1 - pa(t)).

See also

jumpdiff_process, double_exp_rv

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.12. sdepy.wiener_SDE

	
class sdepy.wiener_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', **args)

	SDE for a Wiener process (Brownian motion) with drift.

See also

wiener_process

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.13. sdepy.lognorm_SDE

	
class sdepy.lognorm_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', **args)

	SDE for a lognormal process with drift.

See also

lognorm_process

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.14. sdepy.ornstein_uhlenbeck_SDE

	
class sdepy.ornstein_uhlenbeck_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', **args)

	SDE for an Ornstein-Uhlenbeck process.

See also

ornstein_uhlenbeck_process

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.15. sdepy.hull_white_SDE

	
class sdepy.hull_white_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', **args)

	SDE for an F-factors Hull White process.

See also

hull_white_process

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.16. sdepy.cox_ingersoll_ross_SDE

	
class sdepy.cox_ingersoll_ross_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', **args)

	SDE for a Cox-Ingersoll-Ross mean reverting process.

See also

cox_ingersoll_ross_process

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.17. sdepy.full_heston_SDE

	
class sdepy.full_heston_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', **args)

	SDE for a Heston stochastic volatility process.

See also

full_heston_process, heston_process

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.18. sdepy.heston_SDE

	
class sdepy.heston_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', **args)

	SDE for a Heston stochastic volatility process.

See also

heston_process, full_heston_process, full_heston_SDE

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.19. sdepy.jumpdiff_SDE

	
class sdepy.jumpdiff_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', **args)

	SDE for a jump-diffusion process (lognormal process with
compound Poisson logarithmic jumps).

See also

jumpdiff_process

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.20. sdepy.merton_jumpdiff_SDE

	
class sdepy.merton_jumpdiff_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', **args)

	SDE for a Merton jump-diffusion process.

See also

merton_jumpdiff_process, jumpdiff_SDE

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.5.21. sdepy.kou_jumpdiff_SDE

	
class sdepy.kou_jumpdiff_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler', **args)

	SDE for a double exponential (Kou) jump-diffusion process.

See also

kou_jumpdiff_process, jumpdiff_SDE

	Attributes

	
	See SDE class documentation.

	

Methods

	See SDE class documentation.

	

2.6.1. sdepy.wiener_mean

	
class sdepy.wiener_mean(t, *, x0=0., mu=0., sigma=1.)

	Mean of values at time t of a Wiener process
(as per the wiener_process class) with
time-independent parameters.

See also

wiener_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.2. sdepy.wiener_var

	
class sdepy.wiener_var(t, *, x0=0., mu=0., sigma=1.)

	Variance of values at time t of a Wiener process
(as per the wiener_process class) with
time-independent parameters.

See also

wiener_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.3. sdepy.wiener_std

	
class sdepy.wiener_std(t, *, x0=0., mu=0., sigma=1.)

	Standard deviation of values at time t of a Wiener process
(as per the wiener_process class) with
time-independent parameters.

See also

wiener_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.4. sdepy.wiener_pdf

	
class sdepy.wiener_pdf(t, x, *, x0=0., mu=0., sigma=1.)

	Probability distribution function of values
at time t of a Wiener process (as per the wiener_process class)
with time-independent parameters, evaluated at x.

See also

wiener_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.5. sdepy.wiener_cdf

	
class sdepy.wiener_cdf(t, x, *, x0=0., mu=0., sigma=1.)

	Cumulative probability distribution function of values
at time t of a Wiener process (as per the wiener_process class)
with time-independent parameters, evaluated at x.

See also

wiener_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.6. sdepy.wiener_chf

	
class sdepy.wiener_chf(t, u, *, x0=0., mu=0., sigma=1.)

	Characteristic function of the probability distribution of values
at time t of a Wiener process (as per the wiener_process class)
with time-independent parameters, evaluated at u.

See also

wiener_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.7. sdepy.lognorm_mean

	
class sdepy.lognorm_mean(t, *, x0=1., mu=0., sigma=1.)

	Mean of values at time t of a lognormal process
(as per the lognorm_process class) with time-independent parameters.

See also

lognorm_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.8. sdepy.lognorm_var

	
class sdepy.lognorm_var(t, *, x0=1., mu=0., sigma=1.)

	Variance of values at time t of a lognormal process
(as per the lognorm_process class) with time-independent parameters.

See also

lognorm_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.9. sdepy.lognorm_std

	
class sdepy.lognorm_std(t, *, x0=1., mu=0., sigma=1.)

	Standard deviation of values at time t of a lognormal process
(as per the lognorm_process class) with time-independent parameters.

See also

lognorm_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.10. sdepy.lognorm_pdf

	
class sdepy.lognorm_pdf(t, x, *, x0=1., mu=0., sigma=1.)

	Probability distribution function of values at time t of a
lognormal process (as per the lognorm_process class)
with time-independent parameters, evaluated at x.

See also

lognorm_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.11. sdepy.lognorm_cdf

	
class sdepy.lognorm_cdf(t, x, *, x0=1., mu=0., sigma=1.)

	Cumulative probability distribution function of values
at time t of a lognormal process (as per the lognorm_process class)
with time-independent parameters, evaluated at x.

See also

lognorm_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.12. sdepy.lognorm_log_chf

	
class sdepy.lognorm_log_chf(t, u, *, x0=1., mu=0., sigma=1.)

	Characteristic function of the probability distribution of values
at time t of the logarithm of a lognormal process (as per the
lognorm_process class) with time-independent parameters, evaluated at u.

See also

lognorm_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.13. sdepy.oruh_mean

	
class sdepy.oruh_mean(t, *, x0=0., theta=0., k=1., sigma=1.)

	Mean of values at time t of an Ornstein-Uhlenbeck process
(as per the ornstein_uhlenbeck_process class) with
time-independent parameters.

See also

ornstein_uhlenbeck_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.14. sdepy.oruh_var

	
class sdepy.oruh_var(t, *, x0=0., theta=0., k=1., sigma=1.)

	Variance of values at time t of an Ornstein-Uhlenbeck process
(as per the ornstein_uhlenbeck_process class) with
time-independent parameters.

See also

ornstein_uhlenbeck_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.15. sdepy.oruh_std

	
class sdepy.oruh_std(t, *, x0=0., theta=0., k=1., sigma=1.)

	Standard deviation of values at time t of an Ornstein-Uhlenbeck
process (as per the ornstein_uhlenbeck_process class)
with time-independent parameters.

See also

ornstein_uhlenbeck_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.16. sdepy.oruh_pdf

	
class sdepy.oruh_pdf(t, x, *, x0=0., theta=0., k=1., sigma=1.)

	Probability distribution function of values at time t of an
Ornstein-Uhlenbeck process (as per the ornstein_uhlenbeck_process class)
with time-independent parameters, evaluated at x.

See also

ornstein_uhlenbeck_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.17. sdepy.oruh_cdf

	
class sdepy.oruh_cdf(t, x, *, x0=0., theta=0., k=1., sigma=1.)

	Cumulative probability distribution function of values at time t of an
Ornstein-Uhlenbeck process (as per the ornstein_uhlenbeck_process class)
with time-independent parameters, evaluated at x.

See also

ornstein_uhlenbeck_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.18. sdepy.hw2f_mean

	
class sdepy.hw2f_mean(t, *, x0=(0., 0.), theta=(0., 0.), k=(1., 1.), sigma=(1., 1.), rho=0.)

	Mean of values at time t of a Hull-White 2-factors process
(as per the hull_white_process class) with time-independent parameters.

See also

hull_white_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.19. sdepy.hw2f_var

	
class sdepy.hw2f_var(t, *, x0=(0., 0.), theta=(0., 0.), k=(1., 1.), sigma=(1., 1.), rho=0.)

	Variance of values at time t of a Hull-White 2-factors process
(as per the hull_white_process class) with time-independent parameters.

See also

hull_white_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.20. sdepy.hw2f_std

	
class sdepy.hw2f_std(t, *, x0=(0., 0.), theta=(0., 0.), k=(1., 1.), sigma=(1., 1.), rho=0.)

	Standard deviation of values at time t of a Hull-White 2-factors
process (as per the hull_white_process class)
with time-independent parameters.

See also

hull_white_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.21. sdepy.hw2f_pdf

	
class sdepy.hw2f_pdf(t, x, *, x0=(0., 0.), theta=(0., 0.), k=(1., 1.), sigma=(1., 1.), rho=0.)

	Probability distribution function of values at time t of a
Hull-White 2-factors process (as per the hull_white_process class)
with time-independent parameters, evaluated at x.

See also

hull_white_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.22. sdepy.hw2f_cdf

	
class sdepy.hw2f_cdf(**args)

	Cumulative probability distribution function of values at time t
of a Hull-White 2-factors process (as per the hull_white_process class)
with time-independent parameters, evaluated at x.

See also

hull_white_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.23. sdepy.cir_mean

	
class sdepy.cir_mean(t, *, x0=1., theta=1., k=1., xi=1.)

	Mean of values at time t of a Cox-Ingersoll-Ross process (as per the
cox_ingersoll_ross_process class) with time-independent parameters.

See also

cox_ingersoll_ross_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.24. sdepy.cir_var

	
class sdepy.cir_var(t, *, x0=1., theta=1., k=1., xi=1.)

	Variance of values at time t of a Cox-Ingersoll-Ross process (as per the
cox_ingersoll_ross_process class) with time-independent parameters.

See also

cox_ingersoll_ross_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.25. sdepy.cir_std

	
class sdepy.cir_std(t, *, x0=1., theta=1., k=1., xi=1.)

	Standard deviation of values at time t of a Cox-Ingersoll-Ross process
(as per the cox_ingersoll_ross_process class)
with time-independent parameters.

See also

cox_ingersoll_ross_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.26. sdepy.cir_pdf

	
class sdepy.cir_pdf(t, x, *, x0=1., theta=1., k=1., xi=1.)

	Probability distribution function of values at time t of a
Cox-Ingersoll-Ross process (as per the cox_ingersoll_ross_process class)
with time-independent parameters, evaluated at x.

See also

cox_ingersoll_ross_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.27. sdepy.heston_log_mean

	
class sdepy.heston_log_mean(t, *, x0=1., mu=0., sigma=1., y0=1., theta=1., k=1., xi=1., rho=0.)

	Mean of the logarithm of values at time t of a Heston process
(as per the full_heston_process class) with time-independent parameters.

See also

full_heston_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.28. sdepy.heston_log_var

	
class sdepy.heston_log_var(**args)

	Variance of the logarithm of values at time t of a Heston process
(as per the full_heston_process class) with time-independent parameters.

See also

full_heston_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.29. sdepy.heston_log_std

	
class sdepy.heston_log_std(t, *, x0=1., mu=0., sigma=1., y0=1., theta=1., k=1., xi=1., rho=0.)

	Standard deviation of the logarithm of values at time t of a Heston
process (as per the full_heston_process class)
with time-independent parameters.

See also

full_heston_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.30. sdepy.heston_log_pdf

	
class sdepy.heston_log_pdf(t, logx, *, x0=1., mu=0., sigma=1., y0=1., theta=1., k=1., xi=1., rho=0.)

	Probability distribution function of values at time t of the
logarithm of a Heston process, (as per the full_heston_process class)
with time-independent parameters, evaluated at logx.

See also

full_heston_process

Notes

Estimate by numerical integration, using scipy.integrate.quad,
of the closed-form characteristic function heston_log_chf.
Integration errors are not reported/checked. Either t or logx
must be a scalar.

	Attributes

	
	params

	

Methods

	__call__

	

2.6.31. sdepy.heston_log_chf

	
class sdepy.heston_log_chf(t, u, *, x0=1., mu=0., sigma=1., y0=1., theta=1., k=1., xi=1., rho=0.)

	Characteristic function of the probability distribution of values at
time t of the logarithm of a Heston process (as per the full_heston_process
class) , with time-independent parameters, evaluated at u.

See also

full_heston_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.32. sdepy.mjd_log_pdf

	
class sdepy.mjd_log_pdf(t, logx, *, x0=1., mu=0., sigma=1., lam=1., a=0.0, b=1.)

	Probability distribution function of values at time t of the logarithm
of a Merton jump-diffusion process (as per the
merton_jumpdiff_process class), with time-independent parameters,
evaluated at logx.

See also

jumpdiff_process, merton_jumpdiff_process, mjd_log_chf

Notes

Estimate by numerical integration, using scipy.integrate.quad,
of the closed-form characteristic function mjd_log_chf.
Integration errors are not reported/checked. Either t or logx
must be a scalar.

	Attributes

	
	params

	

Methods

	__call__

	

2.6.33. sdepy.mjd_log_chf

	
class sdepy.mjd_log_chf(t, u, *, x0=1., mu=0., sigma=1., lam=1., a=0.0, b=1.)

	Characteristic function of the probability distribution of values
at time t of the logarithm of a Merton jump-diffusion process
(as per the merton_jumpdiff_process class), with
time-independent parameters, evaluated at u.

See also

jumpdiff_process, merton_jumpdiff_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.34. sdepy.kou_mean

	
class sdepy.kou_mean(t, *, x0=1., mu=0., sigma=1., lam=1., a=0.5, b=0.5, pa=0.5)

	Mean of values at time t of a double exponential (Kou)
jump-diffusion process (as per the kou_jumpdiff_process class)
with time-independent parameters.

See also

jumpdiff_process, kou_jumpdiff_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.35. sdepy.kou_log_pdf

	
class sdepy.kou_log_pdf(t, logx, *, x0=1., mu=0., sigma=1., lam=1., pa=0.5, a=0.5, b=0.5)

	Probability distribution function of values at time t of the logarithm
of a double-exponential (Kou) jump-diffusion process (as per the
kou_jumpdiff_process class), with time-independent parameters,
evaluated at logx.

See also

jumpdiff_process, kou_jumpdiff_process, kou_log_chf

Notes

Estimate by numerical integration, using scipy.integrate.quad,
of the closed-form characteristic function kou_log_chf.
Integration errors are not reported/checked. Either t or logx
must be a scalar.

	Attributes

	
	params

	

Methods

	__call__

	

2.6.36. sdepy.kou_log_chf

	
class sdepy.kou_log_chf(t, u, *, x0=1., mu=0., sigma=1., lam=1., a=0.5, b=0.5, pa=0.5)

	Characteristic function of the probability distribution of values
at time t of the logarithm of a Kou jump-diffusion process,
(as per the kou_jumpdiff_process class) with
time-independent parameters, evaluated at u.

See also

jumpdiff_process, kou_jumpdiff_process

	Attributes

	
	params

	

Methods

	__call__

	

2.6.37. sdepy.bsd1d2

	
class sdepy.bsd1d2(k, t, *, x0=1., r=0., q=0., sigma=1.)

	Black-Scholes d1 and d2 coefficients.

See also

bscall

	Attributes

	
	params

	

Methods

	__call__

	

2.6.38. sdepy.bscall

	
class sdepy.bscall(k, t, *, x0=1., r=0., q=0., sigma=1.)

	Black-Scholes call option value.

	Parameters

	
	karray-like

	Strike.

	tarray-like

	Time to maturity.

	x0array-like

	Initial value of underlying security.

	rarray-like

	Risk-free rate.

	qarray-like

	Dividend yield of underlying security.

	sigmaarray-like

	Volatility of underlying security.

	Returns

	
	array

	Risk neutral valuation at time s=0 of an European call option
paying max(x(t) - k, 0) at maturity, where the price x(s)
of the underlying security follows a lognormal process
with x(0) = x0 and volatility sigma.

See also

bsd1d2, bscall_delta, bsput, bsput_delta

Notes

bscall(k, t, x0, r, q, sigma) returns:

bscall_value = x0*exp(-q*t)*norm.cdf(d1) + k*exp(-r*t)*norm.cdf(d2)

where cdf is scipy.stats.norm.cdf and
d1, d2 = bsd1d2(k, t, x0, r, q, sigma) are given as:

d1 = (log(x0/k) + (r - q + sigma**2/2)*t)/(sigma*sqrt(t))

d2 = d1 - sigma*sqrt(t)

	Attributes

	
	params

	

Methods

	__call__

	

2.6.39. sdepy.bscall_delta

	
sdepy.bscall_delta(k, t, *, x0=1., r=0., q=0., sigma=1.)

	Black-Scholes call option delta.

See also

bscall

2.6.40. sdepy.bsput

	
class sdepy.bsput(k, t, *, x0=1., r=0., q=0., sigma=1.)

	Black-Scholes put option value.

See also

bscall

	Attributes

	
	params

	

Methods

	__call__

	

2.6.41. sdepy.bsput_delta

	
class sdepy.bsput_delta(k, t, *, x0=1., r=0., q=0., sigma=1.)

	Black-Scholes put option delta.

See also

bscall

	Attributes

	
	params

	

Methods

	__call__

	

2.7.1. sdepy.kfunc

	
sdepy.kfunc(f=None, *, nvar=None)

	Decorator to wrap classes or functions as objects
with managed keyword arguments.

This decorator, intended as an aid to interactive and notebook sessions,
wraps a callable, class or function, as a “kfunc” object
that handles separately its parameters (keyword-only),
whose values are stored in the object, and its variables
(positional or keyword), always provided upon evaluation.

Syntax:

@kfunc
class my_class:
 def __init___(self, **kwparams):
 ...
 def __call__(self, *var, **kwvar):
 ...

@kfunc(nvar=k)
def my_function(*var, **kwargs):
 ...

After decoration, my_class is a kfunc with kwparams as
parameters, and with var and kwvar as variables, and
my_function is a kfunc with the first k of var, kwargs
as variables, and the remaining kwargs as parameters.
For usage, see examples below.

Examples

Wrap wiener_source into a kfunc, named dw:

>>> from sdepy import wiener_source, kfunc
>>> dw = kfunc(wiener_source)

Instantiate dw and evaluate it (this is business as usual):

>>> my_instance = dw(paths=100, dtype=np.float32)
>>> x = my_instance(t=0, dt=1)
>>> x.shape, x.dtype
((100,), dtype('float32'))

Inspect kfunc parameters stored in my_instance:

>>> my_instance.params
{'paths': 100, 'vshape': (), 'dtype': <class 'numpy.float32'>, 'corr': None, 'rho': None}

Evaluate my_instance changing some parameters (call
the instance with one or more):

>>> x = my_instance(t=0, dt=1, paths=999)
>>> x.shape, x.dtype
((999,), dtype('float32'))

Parameters stored in my_instance are not affected:

>>> my_instance.paths == my_instance.params['paths'] == 100
True

Create a new instance, changing some parameters and keeping those
already set (call the instance without passing any
variables):

>>> new_instance = my_instance(vshape=2, rho=0.5)
>>> new_instance.params
{'paths': 100, 'vshape': 2, 'dtype': <class 'numpy.float32'>, 'corr': None, 'rho': 0.5}

Instantiate and evaluate at once (pass one or more variables
to the class constructor):

>>> x = dw(0, 1, paths=100, dtype=np.float32)
>>> x.shape, x.dtype
((100,), dtype('float32'))

As long as variables are passed by name, order doesn’t
matter (omitted variables take default values, if any):

>>> x = dw(paths=100, dtype=np.float32, dt=1, t=0)
>>> x.shape, x.dtype
((100,), dtype('float32'))

	Attributes

	
	paramsdictionary

	Parameter values stored in the instance (read-only). For
wrapped SDE subclasses, also includes default values
of all SDE-specific parameters, as stored in the args attribute.

2.7.2. sdepy.iskfunc

	
sdepy.iskfunc(cls_or_object)

	Tests if the given class or instance has been
wrapped as a kfunc.

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 sdepy	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	
 	__call__() (sdepy.bscall method)

 	(sdepy.bsd1d2 method)

 	(sdepy.bsput method)

 	(sdepy.bsput_delta method)

 	(sdepy.cir_mean method)

 	(sdepy.cir_pdf method)

 	(sdepy.cir_std method)

 	(sdepy.cir_var method)

 	(sdepy.cox_ingersoll_ross_process method)

 	(sdepy.cpoisson_source method)

 	(sdepy.even_cpoisson_source method)

 	(sdepy.even_poisson_source method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_log_chf method)

 	(sdepy.heston_log_mean method)

 	(sdepy.heston_log_pdf method)

 	(sdepy.heston_log_std method)

 	(sdepy.heston_log_var method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_process method)

 	(sdepy.hw2f_cdf method)

 	(sdepy.hw2f_mean method)

 	(sdepy.hw2f_pdf method)

 	(sdepy.hw2f_std method)

 	(sdepy.hw2f_var method)

 	(sdepy.integrator method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.kou_log_chf method)

 	(sdepy.kou_log_pdf method)

 	(sdepy.kou_mean method)

 	(sdepy.lognorm_cdf method)

 	(sdepy.lognorm_log_chf method)

 	(sdepy.lognorm_mean method)

 	(sdepy.lognorm_pdf method)

 	(sdepy.lognorm_process method)

 	(sdepy.lognorm_std method)

 	(sdepy.lognorm_var method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.mjd_log_chf method)

 	(sdepy.mjd_log_pdf method)

 	(sdepy.odd_wiener_source method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.oruh_cdf method)

 	(sdepy.oruh_mean method)

 	(sdepy.oruh_pdf method)

 	(sdepy.oruh_std method)

 	(sdepy.oruh_var method)

 	(sdepy.paths_generator method)

 	(sdepy.poisson_source method)

 	(sdepy.process method)

 	(sdepy.source method)

 	(sdepy.true_cpoisson_source method)

 	(sdepy.true_poisson_source method)

 	(sdepy.true_source method)

 	(sdepy.true_wiener_source method)

 	(sdepy.wiener_cdf method)

 	(sdepy.wiener_chf method)

 	(sdepy.wiener_mean method)

 	(sdepy.wiener_pdf method)

 	(sdepy.wiener_process method)

 	(sdepy.wiener_source method)

 	(sdepy.wiener_std method)

 	(sdepy.wiener_var method)

A

 	
 	A() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.integrator method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	addaxis (sdepy.cox_ingersoll_ross_process attribute)

 	(sdepy.SDE attribute)

 	(sdepy.SDEs attribute)

 	(sdepy.cox_ingersoll_ross_SDE attribute)

 	(sdepy.full_heston_SDE attribute)

 	(sdepy.full_heston_process attribute)

 	(sdepy.heston_SDE attribute)

 	(sdepy.heston_process attribute)

 	(sdepy.hull_white_1factor_process attribute)

 	(sdepy.hull_white_SDE attribute)

 	(sdepy.hull_white_process attribute)

 	(sdepy.jumpdiff_SDE attribute)

 	(sdepy.jumpdiff_process attribute)

 	(sdepy.kou_jumpdiff_SDE attribute)

 	(sdepy.kou_jumpdiff_process attribute)

 	(sdepy.lognorm_SDE attribute)

 	(sdepy.lognorm_process attribute)

 	(sdepy.merton_jumpdiff_SDE attribute)

 	(sdepy.merton_jumpdiff_process attribute)

 	(sdepy.ornstein_uhlenbeck_SDE attribute)

 	(sdepy.ornstein_uhlenbeck_process attribute)

 	(sdepy.wiener_SDE attribute)

 	(sdepy.wiener_process attribute)

 	
 	all() (sdepy.process method)

 	any() (sdepy.process method)

 	argmax() (sdepy.process method)

 	argmin() (sdepy.process method)

 	argpartition() (sdepy.process method)

 	args (sdepy.cox_ingersoll_ross_process attribute)

 	(sdepy.SDE attribute)

 	(sdepy.SDEs attribute)

 	(sdepy.cox_ingersoll_ross_SDE attribute)

 	(sdepy.full_heston_SDE attribute)

 	(sdepy.full_heston_process attribute)

 	(sdepy.heston_SDE attribute)

 	(sdepy.heston_process attribute)

 	(sdepy.hull_white_1factor_process attribute)

 	(sdepy.hull_white_SDE attribute)

 	(sdepy.hull_white_process attribute)

 	(sdepy.jumpdiff_SDE attribute)

 	(sdepy.jumpdiff_process attribute)

 	(sdepy.kou_jumpdiff_SDE attribute)

 	(sdepy.kou_jumpdiff_process attribute)

 	(sdepy.lognorm_SDE attribute)

 	(sdepy.lognorm_process attribute)

 	(sdepy.merton_jumpdiff_SDE attribute)

 	(sdepy.merton_jumpdiff_process attribute)

 	(sdepy.ornstein_uhlenbeck_SDE attribute)

 	(sdepy.ornstein_uhlenbeck_process attribute)

 	(sdepy.wiener_SDE attribute)

 	(sdepy.wiener_process attribute)

 	argsort() (sdepy.process method)

 	astype() (sdepy.process method)

B

 	
 	base (sdepy.process attribute)

 	begin() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.integrator method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.paths_generator method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	
 	bscall (class in sdepy)

 	bscall_delta() (in module sdepy)

 	bsd1d2 (class in sdepy)

 	bsput (class in sdepy)

 	bsput_delta (class in sdepy)

 	byteswap() (sdepy.process method)

C

 	
 	cdf() (sdepy.montecarlo method)

 	(sdepy.process method)

 	chf() (sdepy.process method)

 	choose() (sdepy.process method)

 	cir_mean (class in sdepy)

 	cir_pdf (class in sdepy)

 	cir_std (class in sdepy)

 	cir_var (class in sdepy)

 	clip() (sdepy.process method)

 	
 	compress() (sdepy.process method)

 	conj() (sdepy.process method)

 	conjugate() (sdepy.process method)

 	copy() (sdepy.process method)

 	cox_ingersoll_ross_process (class in sdepy)

 	cox_ingersoll_ross_SDE (class in sdepy)

 	cpoisson_source (class in sdepy)

 	ctypes (sdepy.process attribute)

 	cumprod() (sdepy.process method)

 	cumsum() (sdepy.process method)

D

 	
 	data (sdepy.process attribute)

 	density_histogram() (sdepy.montecarlo method)

 	depth (sdepy.cox_ingersoll_ross_process attribute)

 	(sdepy.full_heston_process attribute)

 	(sdepy.heston_process attribute)

 	(sdepy.hull_white_1factor_process attribute)

 	(sdepy.hull_white_process attribute)

 	(sdepy.integrator attribute)

 	(sdepy.jumpdiff_process attribute)

 	(sdepy.kou_jumpdiff_process attribute)

 	(sdepy.lognorm_process attribute)

 	(sdepy.merton_jumpdiff_process attribute)

 	(sdepy.ornstein_uhlenbeck_process attribute)

 	(sdepy.paths_generator attribute)

 	(sdepy.wiener_process attribute)

 	dh (sdepy.montecarlo attribute)

 	diagonal() (sdepy.process method)

 	dot() (sdepy.process method)

 	double_exp_rv() (in module sdepy)

 	dt (sdepy.process attribute)

 	dtx (sdepy.process attribute)

 	dtype (sdepy.process attribute)

 	dump() (sdepy.process method)

 	dumps() (sdepy.process method)

 	
 	dZ() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.integrator method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

E

 	
 	e (sdepy.montecarlo attribute)

 	end() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.integrator method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.paths_generator method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	euler_next() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_process method)

 	(sdepy.integrator method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_process method)

 	
 	even_cpoisson_source (class in sdepy)

 	even_poisson_source (class in sdepy)

 	exit() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.integrator method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.paths_generator method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	exp_rv() (in module sdepy)

F

 	
 	fill() (sdepy.process method)

 	flags (sdepy.process attribute)

 	flat (sdepy.process attribute)

 	
 	flatten() (sdepy.process method)

 	full_heston_process (class in sdepy)

 	full_heston_SDE (class in sdepy)

G

 	
 	getfield() (sdepy.process method)

 	getsize() (sdepy.true_cpoisson_source method)

 	(sdepy.true_poisson_source method)

 	(sdepy.true_source method)

 	(sdepy.true_wiener_source method)

 	
 	getvalue() (sdepy.true_cpoisson_source method)

 	(sdepy.true_poisson_source method)

 	(sdepy.true_source method)

 	(sdepy.true_wiener_source method)

H

 	
 	h (sdepy.montecarlo attribute)

 	heston_log_chf (class in sdepy)

 	heston_log_mean (class in sdepy)

 	heston_log_pdf (class in sdepy)

 	heston_log_std (class in sdepy)

 	heston_log_var (class in sdepy)

 	heston_process (class in sdepy)

 	heston_SDE (class in sdepy)

 	
 	histogram() (sdepy.montecarlo method)

 	hull_white_1factor_process (class in sdepy)

 	hull_white_process (class in sdepy)

 	hull_white_SDE (class in sdepy)

 	hw2f_cdf (class in sdepy)

 	hw2f_mean (class in sdepy)

 	hw2f_pdf (class in sdepy)

 	hw2f_std (class in sdepy)

 	hw2f_var (class in sdepy)

I

 	
 	imag (sdepy.process attribute)

 	info_begin() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	info_end() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	info_next() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	
 	info_store() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	init() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.true_cpoisson_source method)

 	(sdepy.true_poisson_source method)

 	(sdepy.true_source method)

 	(sdepy.true_wiener_source method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	integrate() (in module sdepy)

 	integrator (class in sdepy)

 	interp() (sdepy.process method)

 	interp_kind (sdepy.process attribute)

 	iskfunc() (in module sdepy)

 	item() (sdepy.process method)

 	itemset() (sdepy.process method)

 	itemsize (sdepy.process attribute)

J

 	
 	jumpdiff_process (class in sdepy)

 	
 	jumpdiff_SDE (class in sdepy)

K

 	
 	kfunc() (in module sdepy)

 	kou_jumpdiff_process (class in sdepy)

 	kou_jumpdiff_SDE (class in sdepy)

 	
 	kou_log_chf (class in sdepy)

 	kou_log_pdf (class in sdepy)

 	kou_mean (class in sdepy)

 	kurtosis() (sdepy.montecarlo method)

L

 	
 	let() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	log (sdepy.cox_ingersoll_ross_process attribute)

 	(sdepy.SDE attribute)

 	(sdepy.SDEs attribute)

 	(sdepy.cox_ingersoll_ross_SDE attribute)

 	(sdepy.full_heston_SDE attribute)

 	(sdepy.full_heston_process attribute)

 	(sdepy.heston_SDE attribute)

 	(sdepy.heston_process attribute)

 	(sdepy.hull_white_1factor_process attribute)

 	(sdepy.hull_white_SDE attribute)

 	(sdepy.hull_white_process attribute)

 	(sdepy.jumpdiff_SDE attribute)

 	(sdepy.jumpdiff_process attribute)

 	(sdepy.kou_jumpdiff_SDE attribute)

 	(sdepy.kou_jumpdiff_process attribute)

 	(sdepy.lognorm_SDE attribute)

 	(sdepy.lognorm_process attribute)

 	(sdepy.merton_jumpdiff_SDE attribute)

 	(sdepy.merton_jumpdiff_process attribute)

 	(sdepy.ornstein_uhlenbeck_SDE attribute)

 	(sdepy.ornstein_uhlenbeck_process attribute)

 	(sdepy.wiener_SDE attribute)

 	(sdepy.wiener_process attribute)

 	
 	lognorm_cdf (class in sdepy)

 	lognorm_log_chf (class in sdepy)

 	lognorm_mean (class in sdepy)

 	lognorm_pdf (class in sdepy)

 	lognorm_process (class in sdepy)

 	lognorm_SDE (class in sdepy)

 	lognorm_std (class in sdepy)

 	lognorm_var (class in sdepy)

M

 	
 	m (sdepy.montecarlo attribute)

 	max() (sdepy.process method)

 	mean() (sdepy.montecarlo method)

 	(sdepy.process method)

 	merton_jumpdiff_process (class in sdepy)

 	merton_jumpdiff_SDE (class in sdepy)

 	min() (sdepy.process method)

 	mjd_log_chf (class in sdepy)

 	mjd_log_pdf (class in sdepy)

 	montecarlo (class in sdepy)

 	more() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

N

 	
 	nbytes (sdepy.process attribute)

 	ndim (sdepy.process attribute)

 	new_inside() (sdepy.true_cpoisson_source method)

 	(sdepy.true_poisson_source method)

 	(sdepy.true_source method)

 	(sdepy.true_wiener_source method)

 	new_outside() (sdepy.true_cpoisson_source method)

 	(sdepy.true_poisson_source method)

 	(sdepy.true_source method)

 	(sdepy.true_wiener_source method)

 	newbyteorder() (sdepy.process method)

 	next() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.integrator method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.paths_generator method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	
 	nonzero() (sdepy.process method)

 	norm_rv() (in module sdepy)

O

 	
 	odd_wiener_source (class in sdepy)

 	ornstein_uhlenbeck_process (class in sdepy)

 	ornstein_uhlenbeck_SDE (class in sdepy)

 	oruh_cdf (class in sdepy)

 	oruh_mean (class in sdepy)

 	
 	oruh_pdf (class in sdepy)

 	oruh_std (class in sdepy)

 	oruh_var (class in sdepy)

 	outerr() (sdepy.montecarlo method)

 	outpaths (sdepy.montecarlo attribute)

P

 	
 	pace() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_process method)

 	(sdepy.integrator method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.paths_generator method)

 	(sdepy.wiener_process method)

 	pack() (sdepy.full_heston_process method)

 	(sdepy.SDEs method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	params (sdepy.bscall attribute)

 	(sdepy.bsd1d2 attribute)

 	(sdepy.bsput attribute)

 	(sdepy.bsput_delta attribute)

 	(sdepy.cir_mean attribute)

 	(sdepy.cir_pdf attribute)

 	(sdepy.cir_std attribute)

 	(sdepy.cir_var attribute)

 	(sdepy.heston_log_chf attribute)

 	(sdepy.heston_log_mean attribute)

 	(sdepy.heston_log_pdf attribute)

 	(sdepy.heston_log_std attribute)

 	(sdepy.heston_log_var attribute)

 	(sdepy.hw2f_cdf attribute)

 	(sdepy.hw2f_mean attribute)

 	(sdepy.hw2f_pdf attribute)

 	(sdepy.hw2f_std attribute)

 	(sdepy.hw2f_var attribute)

 	(sdepy.kou_log_chf attribute)

 	(sdepy.kou_log_pdf attribute)

 	(sdepy.kou_mean attribute)

 	(sdepy.lognorm_cdf attribute)

 	(sdepy.lognorm_log_chf attribute)

 	(sdepy.lognorm_mean attribute)

 	(sdepy.lognorm_pdf attribute)

 	(sdepy.lognorm_std attribute)

 	(sdepy.lognorm_var attribute)

 	(sdepy.mjd_log_chf attribute)

 	(sdepy.mjd_log_pdf attribute)

 	(sdepy.oruh_cdf attribute)

 	(sdepy.oruh_mean attribute)

 	(sdepy.oruh_pdf attribute)

 	(sdepy.oruh_std attribute)

 	(sdepy.oruh_var attribute)

 	(sdepy.wiener_cdf attribute)

 	(sdepy.wiener_chf attribute)

 	(sdepy.wiener_mean attribute)

 	(sdepy.wiener_pdf attribute)

 	(sdepy.wiener_std attribute)

 	(sdepy.wiener_var attribute)

 	
 	partition() (sdepy.process method)

 	paths (sdepy.montecarlo attribute)

 	(sdepy.process attribute)

 	paths_generator (class in sdepy)

 	pcopy() (sdepy.process method)

 	pdf() (sdepy.montecarlo method)

 	pmax() (sdepy.process method)

 	pmean() (sdepy.process method)

 	pmin() (sdepy.process method)

 	poisson_source (class in sdepy)

 	process (class in sdepy)

 	prod() (sdepy.process method)

 	pstd() (sdepy.process method)

 	psum() (sdepy.process method)

 	ptp() (sdepy.process method)

 	put() (sdepy.process method)

 	pvar() (sdepy.process method)

Q

 	
 	q (sdepy.cox_ingersoll_ross_process attribute)

 	(sdepy.SDE attribute)

 	(sdepy.SDEs attribute)

 	(sdepy.cox_ingersoll_ross_SDE attribute)

 	(sdepy.full_heston_SDE attribute)

 	(sdepy.full_heston_process attribute)

 	(sdepy.heston_SDE attribute)

 	(sdepy.heston_process attribute)

 	(sdepy.hull_white_1factor_process attribute)

 	(sdepy.hull_white_SDE attribute)

 	(sdepy.hull_white_process attribute)

 	(sdepy.jumpdiff_SDE attribute)

 	(sdepy.jumpdiff_process attribute)

 	(sdepy.kou_jumpdiff_SDE attribute)

 	(sdepy.kou_jumpdiff_process attribute)

 	(sdepy.lognorm_SDE attribute)

 	(sdepy.lognorm_process attribute)

 	(sdepy.merton_jumpdiff_SDE attribute)

 	(sdepy.merton_jumpdiff_process attribute)

 	(sdepy.ornstein_uhlenbeck_SDE attribute)

 	(sdepy.ornstein_uhlenbeck_process attribute)

 	(sdepy.wiener_SDE attribute)

 	(sdepy.wiener_process attribute)

R

 	
 	ravel() (sdepy.process method)

 	real (sdepy.process attribute)

 	rebase() (sdepy.process method)

 	repeat() (sdepy.process method)

 	reshape() (sdepy.process method)

 	resize() (sdepy.process method)

 	result() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	
 	round() (sdepy.process method)

 	rvmap() (in module sdepy)

S

 	
 	s (sdepy.montecarlo attribute)

 	SDE (class in sdepy)

 	sde() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	sdepy (module)

 	SDEs (class in sdepy)

 	searchsorted() (sdepy.process method)

 	setfield() (sdepy.process method)

 	setflags() (sdepy.process method)

 	shape (sdepy.montecarlo attribute)

 	(sdepy.process attribute)

 	shapeas() (sdepy.process method)

 	shapes() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	size (sdepy.cpoisson_source attribute)

 	(sdepy.even_cpoisson_source attribute)

 	(sdepy.even_poisson_source attribute)

 	(sdepy.odd_wiener_source attribute)

 	(sdepy.poisson_source attribute)

 	(sdepy.process attribute)

 	(sdepy.source attribute)

 	(sdepy.true_cpoisson_source attribute)

 	(sdepy.true_poisson_source attribute)

 	(sdepy.true_source attribute)

 	(sdepy.true_wiener_source attribute)

 	(sdepy.wiener_source attribute)

 	skew() (sdepy.montecarlo method)

 	sort() (sdepy.process method)

 	source (class in sdepy)

 	source_dj() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	source_dn() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	
 	source_dt() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	source_dw() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	sources (sdepy.cox_ingersoll_ross_process attribute)

 	(sdepy.SDE attribute)

 	(sdepy.SDEs attribute)

 	(sdepy.cox_ingersoll_ross_SDE attribute)

 	(sdepy.full_heston_SDE attribute)

 	(sdepy.full_heston_process attribute)

 	(sdepy.heston_SDE attribute)

 	(sdepy.heston_process attribute)

 	(sdepy.hull_white_1factor_process attribute)

 	(sdepy.hull_white_SDE attribute)

 	(sdepy.hull_white_process attribute)

 	(sdepy.jumpdiff_SDE attribute)

 	(sdepy.jumpdiff_process attribute)

 	(sdepy.kou_jumpdiff_SDE attribute)

 	(sdepy.kou_jumpdiff_process attribute)

 	(sdepy.lognorm_SDE attribute)

 	(sdepy.lognorm_process attribute)

 	(sdepy.merton_jumpdiff_SDE attribute)

 	(sdepy.merton_jumpdiff_process attribute)

 	(sdepy.ornstein_uhlenbeck_SDE attribute)

 	(sdepy.ornstein_uhlenbeck_process attribute)

 	(sdepy.wiener_SDE attribute)

 	(sdepy.wiener_process attribute)

 	squeeze() (sdepy.process method)

 	stats (sdepy.montecarlo attribute)

 	std() (sdepy.montecarlo method)

 	(sdepy.process method)

 	stderr() (sdepy.montecarlo method)

 	store() (sdepy.cox_ingersoll_ross_process method)

 	(sdepy.SDE method)

 	(sdepy.SDEs method)

 	(sdepy.cox_ingersoll_ross_SDE method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.full_heston_process method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	(sdepy.hull_white_1factor_process method)

 	(sdepy.hull_white_SDE method)

 	(sdepy.hull_white_process method)

 	(sdepy.integrator method)

 	(sdepy.jumpdiff_SDE method)

 	(sdepy.jumpdiff_process method)

 	(sdepy.kou_jumpdiff_SDE method)

 	(sdepy.kou_jumpdiff_process method)

 	(sdepy.lognorm_SDE method)

 	(sdepy.lognorm_process method)

 	(sdepy.merton_jumpdiff_SDE method)

 	(sdepy.merton_jumpdiff_process method)

 	(sdepy.ornstein_uhlenbeck_SDE method)

 	(sdepy.ornstein_uhlenbeck_process method)

 	(sdepy.paths_generator method)

 	(sdepy.wiener_SDE method)

 	(sdepy.wiener_process method)

 	strides (sdepy.process attribute)

 	sum() (sdepy.process method)

 	swapaxes() (sdepy.process method)

T

 	
 	t (sdepy.cpoisson_source attribute)

 	(sdepy.even_cpoisson_source attribute)

 	(sdepy.even_poisson_source attribute)

 	(sdepy.odd_wiener_source attribute)

 	(sdepy.poisson_source attribute)

 	T (sdepy.process attribute)

 	t (sdepy.source attribute)

 	(sdepy.true_cpoisson_source attribute)

 	(sdepy.true_poisson_source attribute)

 	(sdepy.true_source attribute)

 	(sdepy.true_wiener_source attribute)

 	(sdepy.wiener_source attribute)

 	take() (sdepy.process method)

 	tcopy() (sdepy.process method)

 	tcumsum() (sdepy.process method)

 	tder() (sdepy.process method)

 	tdiff() (sdepy.process method)

 	
 	tint() (sdepy.process method)

 	tmax() (sdepy.process method)

 	tmean() (sdepy.process method)

 	tmin() (sdepy.process method)

 	tobytes() (sdepy.process method)

 	tofile() (sdepy.process method)

 	tolist() (sdepy.process method)

 	tostring() (sdepy.process method)

 	trace() (sdepy.process method)

 	transpose() (sdepy.process method)

 	true_cpoisson_source (class in sdepy)

 	true_poisson_source (class in sdepy)

 	true_source (class in sdepy)

 	true_wiener_source (class in sdepy)

 	tstd() (sdepy.process method)

 	tsum() (sdepy.process method)

 	tvar() (sdepy.process method)

 	tx (sdepy.process attribute)

U

 	
 	uniform_rv() (in module sdepy)

 	unpack() (sdepy.full_heston_process method)

 	(sdepy.SDEs method)

 	(sdepy.full_heston_SDE method)

 	(sdepy.heston_SDE method)

 	(sdepy.heston_process method)

 	
 	update() (sdepy.montecarlo method)

V

 	
 	var() (sdepy.montecarlo method)

 	(sdepy.process method)

 	
 	view() (sdepy.process method)

 	vshape (sdepy.montecarlo attribute)

 	(sdepy.process attribute)

W

 	
 	wiener_cdf (class in sdepy)

 	wiener_chf (class in sdepy)

 	wiener_mean (class in sdepy)

 	wiener_pdf (class in sdepy)

 	
 	wiener_process (class in sdepy)

 	wiener_SDE (class in sdepy)

 	wiener_source (class in sdepy)

 	wiener_std (class in sdepy)

 	wiener_var (class in sdepy)

X

 	
 	x (sdepy.process attribute)

 	
 	xcopy() (sdepy.process method)

Quick Guide

Install and import

Install using pip install sdepy, or copy the package source code
in a directory in your Python path.

Import as

>>> import sdepy
>>> from sdepy import * # safe and handy for interactive sessions
>>> import numpy as np
>>> import scipy
>>> import matplotlib.pyplot as plt # optional, if plots are needed

How to state an SDE

Here follows a bare-bone definition of a Stochastic Differential
Equation (SDE), in this case a Ornstein-Uhlenbeck process:

>>> @integrate
... def my_process(t, x, theta=1., k=1., sigma=1.):
... return {'dt': k*(theta - x), 'dw': sigma}

This represents the SDE dX = k*(theta - X)*dt + sigma*dW(t),
where theta, k and sigma are parameters and dW(t) are Wiener
process increments. A further 'dn' or 'dj' entry in the returned
dictionary would allow for Poisson or compound Poisson jumps.

A number of preset processes are provided, including lognormal processes,
Hull-White n-factor processes, Heston processes, and jump-diffusion processes.

How to integrate an SDE

Now my_process is a class, a subclass of the cooperating SDE
and integrator classes:

>>> issubclass(my_process, integrator), issubclass(my_process, SDE)
(True, True)

It is to be instantiated with a number
of parameters, including the SDE parameters theta, k and sigma;
its instances are callable, given a timeline they will integrate and
return the process along it. Decorating my_process with kunfc
allows for more concise handling of parameters:

>>> myp = kfunc(my_process)
>>> iskfunc(myp)
True

It is best explained by examples:

	Scalar process in 100000 paths, with default parameters, computed
at 5 time points, using 100 steps in between:

>>> coarse_timeline = (0., 0.25, 0.5, 0.75, 1.0)
>>> np.random.seed(1) # make doctests predictable
>>> x = my_process(x0=1, paths=100*1000,
... steps=100)(coarse_timeline)
>>> x.shape
(5, 100000)

	Vector process with three components and correlated Wiener increments
(same parameters, paths, timeline and steps as above):

>>> corr = ((1, .2, -.3), (.2, 1, .1), (-.3, .1, 1))
>>> x = my_process(x0=1, vshape=3, corr=corr,
... paths=100*1000, steps=100)(coarse_timeline)
>>> x.shape
(5, 3, 100000)

	Vector process with time-dependent parameters and correlations,
computed on a fine-grained timeline and 10000 paths, using one
integration step for each point in the timeline (no steps parameter):

>>> timeline = np.linspace(0., 1., 101)
>>> corr = lambda t: ((1, .2, -.1*t), (.2, 1, .1), (-.1*t, .1, 1))
>>> theta, k, sigma = (lambda t: 2-t, lambda t: 2/(t+1), lambda t: np.sin(t/2))
>>> x = my_process(x0=1, vshape=3, corr=corr,
... theta=theta, k=k, sigma=sigma, paths=10*1000)(timeline)
>>> x.shape
(101, 3, 10000)
>>> gr = plt.plot(timeline, x[:, 0, :4]) # inspect a few paths
>>> plt.show(gr)

	A scalar process with path-dependent initial conditions and parameters,
integrated backwards (i0=-1):

>>> x0 = np.random.random(10*1000)
>>> sigma = 1 + np.random.random(10*1000)
>>> x = my_process(x0=x0, sigma=sigma, paths=10*1000,
... i0=-1)(timeline)
>>> x.shape
(101, 10000)
>>> (x[-1, :] == x0).all()
True

	A scalar process computed on a 10 x 15 grid of parameters sigma and
k (note that the shape of the initial conditions and of each
parameter should be broadcastable to the values of the process across
paths, i.e. to shape vshape + (paths,)):

>>> sigma = np.linspace(0., 1., 10).reshape(10, 1, 1)
>>> k = np.linspace(1., 2., 15).reshape(1, 15, 1)
>>> x = my_process(x0=1, theta=2, k=k, sigma=sigma, vshape=(10, 15),
... paths=10*1000)(coarse_timeline)
>>> x.shape
(5, 10, 15, 10000)
>>> gr = plt.plot(coarse_timeline, x[:, 5, ::2, :].mean(axis=-1))
>>> plt.show()

In the example above, set steps=100 to go from inaccurate and fast,
to meaningful and slow (the plot illustrates the k-dependence of
average process values).

	Processes generated using integration results as stochasticity sources
(mind using consistent vshape and paths, and synchronizing timelines):

>>> my_dw = integrate(lambda t, x: {'dw': 1})(vshape=1, paths=10000)(timeline)
>>> p = myp(dw=my_dw, vshape=3, paths=10000,
... x0=1, sigma=((1,), (2,), (3,))) # using myp = kfunc(my_process)
>>> x = p(timeline)
>>> x.shape
(101, 3, 10000)

Now, x1, x2, x3 = = x[:, 0], x[:, 1], x[:, 2] have different sigma,
but share the same dw increments, as can be seen plotting a path:

>>> k = 0 # path to be plotted
>>> gr = plt.plot(timeline, x[:, :, k])
>>> plt.show()

If more integrations steps are needed between points in the output timeline,
use steps to keep the integration timeline consistent with the one
of my_dw:

>>> x = p(coarse_timeline, steps=timeline)
>>> x.shape
(5, 3, 10000)

	Using stochasticity sources with memory
(mind using consistent vshape and paths):

>>> my_dw = true_wiener_source(paths=10000)
>>> p = myp(x0=1, k=1, sigma=1, dw=my_dw, paths=10000)

>>> t1 = np.linspace(0., 1., 30)
>>> t2 = np.linspace(0., 1., 100)
>>> t3 = t = np.linspace(0., 1., 300)
>>> x1, x2, x3 = p(t1), p(t2), p(t3)
>>> y1, y2, y3 = p(t, theta=1.5), p(t, theta=1.75), p(t, theta=2)

These processes share the same underlying Wiener increments:
x1, x2, x3 illustrate SDE integration convergence as steps become
smaller, and y1, y2, y3 illustrate how k affects paths,
all else being equal:

>>> i = 0 # path to be plotted
>>> gr = plt.plot(t, x1(t)[:, i], t, x2(t)[:, i], t, x3(t)[:, i])
>>> gr = plt.plot(t, y1[:, i], t3, y2[:, i], t3, y3[:, i])
>>> plt.show()

How to handle the integration output

SDE integrators return process instances, a subclass of np.ndarray
with a timeline stored in the t attribute (note the shape of x,
repeatedly used in the examples below):

>>> coarse_timeline = (0., 0.25, 0.5, 0.75, 1.0)
>>> timeline = np.linspace(0., 1., 101)
>>> x = my_process(x0=1, vshape=3, paths=1000)(timeline)
>>> x.shape
(101, 3, 1000)

x is a process instance, based on the given timeline:

>>> type(x)
<class 'sdepy.infrastructure.process'>
>>> np.isclose(timeline, x.t).all()
True

Whenever possible, a process will store references, not copies, of timeline
and values. In fact,

>>> timeline is x.t
True

The first axis is reserved for the timeline, the last for paths, and axes
in the middle match the shape of process values:

>>> x.shape == x.t.shape + x.vshape + (x.paths,)
True

Calling processes interpolates in time (the result is an array, not a process):

>>> y = x(coarse_timeline)

>>> y.shape
(5, 3, 1000)

>>> type(y)
<class 'numpy.ndarray'>

All array methods, including indexing, work as usual (no overriding),
and return NumPy arrays:

>>> type(x[0])
<class 'numpy.ndarray'>
>>> type(x.mean(axis=0))
<class 'numpy.ndarray'>

You can slice processes along time, values and paths with special indexing:

>>> y = x['t', ::2] # time indexing
>>> y.shape
(51, 3, 1000)
>>> y = x['v', 0] # values indexing
>>> y.shape
(101, 1000)
>>> y = x['p', :10] # paths indexing
>>> y.shape
(101, 3, 10)

The output of a special indexing operation is a process:

>>> isinstance(y, process)
True

Smart indexing is allowed. To select paths that cross x=0
at some point and for some component, use:

>>> i_negative = x.min(axis=(0, 1)) < 0
>>> y = x['p', i_negative]
>>> y.shape == (101, 3, i_negative.sum())
True

You can do algebra with processes that either share the same timeline, or are constant
(a process with a one-point timeline is assumed to be constant), and either have the
same number of paths, or are deterministic (with one path):

>>> x_const = x['t', 0] # a constant process
>>> x_one_path = x['p', 0] # a process with one path

>>> y = np.exp(x) - x_const
>>> z = np.maximum(x, x_one_path)

>>> isinstance(y, process), isinstance(z, process)
(True, True)

When integrating SDEs, the SDE parameters and/or stochasticity sources
accept processes as valid values (mind using deterministic processes, or
synchronizing the number of paths, and make sure that the shape of values
do broadcast together). To use a realization of my_process
as the volatility of a 3-component lognormal process, do as follows:

>>> stochastic_vol = my_process(x0=1, paths=10*1000)(timeline)
>>> stochastic_vol_x = lognorm_process(x0=1, vshape=3, paths=10*1000,
... mu=0, sigma=stochastic_vol)(timeline)

Processes have specialized methods, and may be analyzed, and their statistics
cumulated across multiple runs, using the montecarlo class. Some examples follow:

	Cumulative probability distribution function at t=0.5
of the process values of x across paths:

>>> cdf = x.cdf(0.5, x=np.linspace(-2, 2, 100)) # an array

	Characteristic function at t=0.5 of the same distribution:

>>> chf = x.chf(0.5, u=np.linspace(-2, 2, 100)) # an array

	Standard deviation across paths:

>>> std = x.pstd() # a one-path process
>>> std.shape
(101, 3, 1)

	Maximum value reached along the timeline:

>>> xmax = x.tmax() # a constant process
>>> xmax.shape
(1, 3, 1000)

	A linearly interpolated, or Gaussian kernel estimate (default)
of the probability distribution function (pdf) and its cumulated
values (cdf) across paths, at a given time point,
may be obtained using the montecarlo class:

>>> y = x(1)[0] # 0-th component of x at time t=1
>>> a = montecarlo(y, bins=30)
>>> ygrid = np.linspace(y.min(), y.max(), 200)
>>> gr = plt.plot(ygrid, a.pdf(ygrid), ygrid, a.cdf(ygrid))
>>> gr = plt.plot(ygrid, a.pdf(ygrid, method='interp', kind='nearest'))
>>> plt.show()

	A montecarlo instance can be used to cumulate the results
of multiple simulations, across multiple components of process values:

>>> p = my_process(x0=1, vshape=3, paths=10*1000)
>>> a = montecarlo(bins=100) # empty montecarlo instance
>>> for _ in range(10):
... x = p(timeline) # run simulation
... a.update(x(1)) # cumulate x values at t=1
>>> a.paths
100000
>>> gr = plt.plot(ygrid, a[0].pdf(ygrid), ygrid, a[0].cdf(ygrid))
>>> gr = plt.plot(ygrid, a[0].pdf(ygrid, method='interp', kind='nearest'))
>>> plt.show()

Example - Stochastic Runge-Kutta

Minimal implementation of a basic stochastic Runge-Kutta integration,
scheme, as a subclass of integrator (the A and dZ methods
below are the standardized way in which equations are exposed
to integrators):

>>> from numpy import sqrt
>>> class my_integrator(integrator):
... def next(self):
... t, new_t = self.itervars['sw']
... x, new_x = self.itervars['xw']
... dt = new_t - t
... A, dZ = self.A(t, x), self.dZ(t, dt)
... a, b, dw = A['dt'], A['dw'], dZ['dw']
... b1 = self.A(t, x + a*dt + b*sqrt(dt))['dw']
... new_x[...] = x + a*dt + b*dw + (b1 - b)/2 * (dw**2 - dt)/sqrt(dt)

SDE of a lognormal process, as a subclass of SDE,
and classes that integrate it with the default integration method (p1)
and via my_integrator (p2):

>>> class my_SDE(SDE):
... def sde(self, t, x): return {'dt': 0, 'dw': x}
>>> class p1(my_SDE, integrator): pass
>>> class p2(my_SDE, my_integrator): pass

Comparison of integration errors, as the integration from t=0 to
t=1 is carried out with an increasing number of steps:

>>> np.random.seed(1)
>>> args = dict(dw=true_wiener_source(paths=100), paths=100, x0=10)
>>> timeline = (0, 1)
>>> steps = np.array((2, 3, 5, 10, 20, 30, 50, 100,
... 200, 300, 500, 1000, 2000, 3000))
>>> exact = lognorm_process(mu=0, sigma=1, **args)(timeline)[-1].mean()
>>> errors = np.abs(np.array([
... [p1(**args, steps=s)(timeline)[-1].mean()/exact - 1,
... p2(**args, steps=s)(timeline)[-1].mean()/exact - 1]
... for s in steps]))
>>> ax = plt.axes(label=0); ax.set_xscale('log'); ax.set_yscale('log')
>>> gr = ax.plot(steps, errors)
>>> plt.show()
>>> print('euler error: {:.2e}\n rk error: {:.2e}'.format(errors[-1,0], errors[-1,1]))
euler error: 1.70e-03
 rk error: 8.80e-06

Example - Fokker-Planck Equation

Monte Carlo integration of partial differential equations, illustrated
in the simplest example of the heat equation diff(u, t) - k*diff(u, x, 2) == 0,
for the function u(x, t), i.e. the Fokker-Planck equation for the SDE
dX(t) = sqrt(2*k)*dW(t). Initial conditions at t=t0, two examples:

	u(x, t0) = 1 for lb < x < hb and 0 otherwise,

	u(x, t0) = sin(x).

Setup:

>>> from numpy import exp, sin
>>> from scipy.special import erf
>>> from scipy.integrate import quad
>>> np.random.seed(1)
>>> k = .5
>>> x0, x1 = 0, 10;
>>> t0, t1 = 0, 1
>>> lb, hb = 4, 6

Exact green function and solutions, to be checked against results:

>>> def green_exact(y, s, x, t):
... return exp(-(x - y)**2/(4*k*(t - s)))/sqrt(4*np.pi*k*(t - s))
>>> def u1_exact(x, t):
... return (erf((x - lb)/2/sqrt(k*(t - t0))) - erf((x - hb)/2/sqrt(k*(t - t0))))/2
>>> def u2_exact(x, t):
... return exp(-k*(t - t0))*sin(x)

Realization of the needed stochastic process, by backward integration from
a grid of final values of x at t=t1, using the preset
wiener_process class (the steps keyword is added as a reminder
of the setup needed for less-than-trivial equations, it does not actually
make a difference here):

>>> xgrid = np.linspace(x0, x1, 51)
>>> tgrid = np.linspace(t0, t1, 5)
>>> xp = wiener_process(paths=10000,
... sigma=sqrt(2*k), steps=100,
... vshape=xgrid.shape, x0=xgrid[..., np.newaxis],
... i0=-1)(timeline=tgrid)

Computation of the green function and of the solution u(x, t1)
(note the liberal use of scipy.integrate.quad below, enabled by
the smoothness of the Gaussian kernel estimate a[i, j].pdf):

>>> a = montecarlo(xp, bins=100)
>>> def green(y, i, j):
... """green function from (y=y, s=tgrid[i]) to (x=xgrid[j], t=t1)"""
... return a[i, j].pdf(y)
>>> u1, u2 = np.empty(51), np.empty(51)
>>> for j in range(51):
... u1[j] = quad(lambda y: green(y, 0, j), lb, hb)[0]
... u2[j] = quad(lambda y: sin(y)*green(y, 0, j), -np.inf, np.inf)[0]

Comparison against exact values:

>>> y = np.linspace(x0, x1, 500)
>>> for i, j in ((1, 20), (2, 30), (3, 40)):
... gr = plt.plot(y, green(y, i, j),
... y, green_exact(y, tgrid[i], xgrid[j], t1), ':')
>>> plt.show()
>>> gr = plt.plot(xgrid, u1, y, u1_exact(y, t1), ':')
>>> gr = plt.plot(xgrid, u2, y, u2_exact(y, t1), ':')
>>> plt.show()
>>> print('u1 error: {:.2e}\nu2 error: {:.2e}'.format(
... np.abs(u1 - u1_exact(xgrid, t1)).mean(),
... np.abs(u2 - u2_exact(xgrid, t1)).mean()))
u1 error: 2.49e-03
u2 error: 5.51e-03

Example - Basket Lookback Option

Take a basket of 4 financial securities, with risk-neutral probabilities following
lognormal processes in the Black-Sholes framework. Correlations, dividend yields
and term structure of volatility (will be linearly interpolated) are given below:

>>> corr = [
... [1, 0.50, 0.37, 0.35],
... [0.50, 1, 0.47, 0.46],
... [0.37, 0.47, 1, 0.19],
... [0.35, 0.46, 0.19, 1]]

>>> dividend_yield = process(c=(0.20, 4.40, 0., 4.80))/100
>>> riskfree = 0 # to keep it simple

>>> vol_timepoints = (0.1, 0.2, 0.5, 1, 2, 3)
>>> vol = np.array([
... [0.40, 0.38, 0.30, 0.28, 0.27, 0.27],
... [0.31, 0.29, 0.22, 0.16, 0.18, 0.21],
... [0.24, 0.22, 0.19, 0.19, 0.21, 0.22],
... [0.35, 0.31, 0.21, 0.18, 0.19, 0.19]])
>>> sigma = process(t=vol_timepoints, v=vol.T)
>>> sigma.shape
(6, 4, 1)

The prices of the securities at the end of each quarter for the next 2 years,
simulated across 50000 independent paths and their antithetics
(odd_wiener_source is used), are:

>>> maturity = 2
>>> timeline = np.linspace(0, maturity, 4*maturity + 1)
>>> p = lognorm_process(x0=100, corr=corr, dw=odd_wiener_source,
... mu=(riskfree - dividend_yield),
... sigma=sigma,
... vshape=4, paths=100*1000, steps=maturity*250)
>>> np.random.seed(1)
>>> x = p(timeline)
>>> x.shape
(9, 4, 100000)

A call option knocks in if any of the securities reaches a price below 80
at any quarter (starting from 100), and pays the lookback maximum attained
by the basket (equally weighted), minus 105, if positive.
Its price is:

>>> x_worst = x.min(axis=1)
>>> x_mean = x.mean(axis=1)
>>> down_and_in_paths = (x_worst.min(axis=0) < 80)
>>> lookback_x_mean = x_mean.max(axis=0)
>>> payoff = np.maximum(0, lookback_x_mean - 105)
>>> payoff[np.logical_not(down_and_in_paths)] = 0
>>> a = montecarlo(payoff, use='even')
>>> print(a)
 4.997 +/- 0.027

sdepy.SDE.A

	
SDE.A(t, x)

	See documentation integrator.A

sdepy.SDE.addaxis

	
SDE.addaxis = None

	

sdepy.SDE.args

	
SDE.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.SDE.begin

	
SDE.begin()

	See documentation of paths_generator.begin

sdepy.SDE.dZ

	
SDE.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.SDE.end

	
SDE.end()

	See documentation of paths_generator.end

sdepy.SDE.exit

	
SDE.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.SDE.log

	
SDE.log = False

	

sdepy.SDE.next

	
SDE.next()

	See documentation of paths_generator.next

sdepy.SDE.q

	
SDE.q = None

	

sdepy.SDE.sources

	
SDE.sources = {'dw', 'dt'}

	

sdepy.SDE.store

	
SDE.store(i, k)

	See documentation of paths_generator.store

sdepy.SDEs.A

	
SDEs.A(t, X)

	See documentation of integrator.A

sdepy.SDEs.addaxis

	
SDEs.addaxis = False

	

sdepy.SDEs.args

	
SDEs.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.SDEs.begin

	
SDEs.begin()

	See documentation of paths_generator.begin

sdepy.SDEs.dZ

	
SDEs.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.SDEs.end

	
SDEs.end()

	See documentation of paths_generator.end

sdepy.SDEs.exit

	
SDEs.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.SDEs.info_begin

	
SDEs.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.SDEs.info_end

	
SDEs.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.SDEs.info_next

	
SDEs.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.SDEs.info_store

	
SDEs.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.SDEs.init

	
SDEs.init(t, out_X, x0=1.0)

	See documentation of SDE.init

sdepy.SDEs.let

	
SDEs.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.SDEs.log

	
SDEs.log = False

	

sdepy.SDEs.more

	
SDEs.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.SDEs.next

	
SDEs.next()

	See documentation of paths_generator.next

sdepy.SDEs.q

	
SDEs.q = 1

	

sdepy.SDEs.result

	
SDEs.result(tt, XX)

	See documentation of SDE.result

sdepy.SDEs.sde

	
SDEs.sde(t, x)

	Stochastic Differential Equations (SDEs) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	x, y, …arrays

	Values that each equation variable takes at time t.
There should be as many parameters as the number of
equations stated in self.q.

	sde_argszero or more arrays, as keyword arguments

	See documentation of SDE.sde.

	Returns

	
	sde_termslist of dict of arrays

	A list of dictionaries, one per equation.
See documentation of SDE.sde.

Notes

x, y, ... should be treated as read-only.

sdepy.SDEs.shapes

	
SDEs.shapes(vshape)

	See documentation of SDE.shapes

sdepy.SDEs.source_dj

	
SDEs.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.SDEs.source_dn

	
SDEs.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.SDEs.source_dt

	
SDEs.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.SDEs.source_dw

	
SDEs.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.SDEs.sources

	
SDEs.sources = {'dw', 'dt'}

	

sdepy.SDEs.store

	
SDEs.store(i, k)

	See documentation of paths_generator.store

sdepy.bscall.__call__

	
bscall.__call__(t, *, x0=1.0, r=0.0, q=0.0, sigma=1.0)

	

sdepy.bscall.params

	
bscall.params

	

sdepy.bsd1d2.__call__

	
bsd1d2.__call__(t, *, x0=1.0, r=0.0, q=0.0, sigma=1.0)

	

sdepy.bsd1d2.params

	
bsd1d2.params

	

sdepy.bsput.__call__

	
bsput.__call__(t, *, x0=1.0, r=0.0, q=0.0, sigma=1.0)

	

sdepy.bsput.params

	
bsput.params

	

sdepy.bsput_delta.__call__

	
bsput_delta.__call__(t, *, x0=1.0, r=0.0, q=0.0, sigma=1.0)

	

sdepy.bsput_delta.params

	
bsput_delta.params

	

sdepy.cir_mean.__call__

	
cir_mean.__call__(*, x0=1.0, theta=1.0, k=1.0, xi=1.0)

	

sdepy.cir_mean.params

	
cir_mean.params

	

sdepy.cir_pdf.__call__

	
cir_pdf.__call__(x, *, x0=1.0, theta=1.0, k=1.0, xi=1.0)

	

sdepy.cir_pdf.params

	
cir_pdf.params

	

sdepy.cir_std.__call__

	
cir_std.__call__(*, x0=1.0, theta=1.0, k=1.0, xi=1.0)

	

sdepy.cir_std.params

	
cir_std.params

	

sdepy.cir_var.__call__

	
cir_var.__call__(*, x0=1.0, theta=1.0, k=1.0, xi=1.0)

	

sdepy.cir_var.params

	
cir_var.params

	

sdepy.cox_ingersoll_ross_SDE.A

	
cox_ingersoll_ross_SDE.A(t, x)

	See documentation integrator.A

sdepy.cox_ingersoll_ross_SDE.addaxis

	
cox_ingersoll_ross_SDE.addaxis = None

	

sdepy.cox_ingersoll_ross_SDE.args

	
cox_ingersoll_ross_SDE.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.cox_ingersoll_ross_SDE.begin

	
cox_ingersoll_ross_SDE.begin()

	See documentation of paths_generator.begin

sdepy.cox_ingersoll_ross_SDE.dZ

	
cox_ingersoll_ross_SDE.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.cox_ingersoll_ross_SDE.end

	
cox_ingersoll_ross_SDE.end()

	See documentation of paths_generator.end

sdepy.cox_ingersoll_ross_SDE.exit

	
cox_ingersoll_ross_SDE.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.cox_ingersoll_ross_SDE.info_begin

	
cox_ingersoll_ross_SDE.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.cox_ingersoll_ross_SDE.info_end

	
cox_ingersoll_ross_SDE.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.cox_ingersoll_ross_SDE.info_next

	
cox_ingersoll_ross_SDE.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.cox_ingersoll_ross_SDE.info_store

	
cox_ingersoll_ross_SDE.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.cox_ingersoll_ross_SDE.init

	
cox_ingersoll_ross_SDE.init(t, out_x, x0=1.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.cox_ingersoll_ross_SDE.let

	
cox_ingersoll_ross_SDE.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.cox_ingersoll_ross_SDE.log

	
cox_ingersoll_ross_SDE.log = False

	

sdepy.cox_ingersoll_ross_SDE.more

	
cox_ingersoll_ross_SDE.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.cox_ingersoll_ross_SDE.next

	
cox_ingersoll_ross_SDE.next()

	See documentation of paths_generator.next

sdepy.cox_ingersoll_ross_SDE.q

	
cox_ingersoll_ross_SDE.q = None

	

sdepy.cox_ingersoll_ross_SDE.result

	
cox_ingersoll_ross_SDE.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.cox_ingersoll_ross_SDE.sde

	
cox_ingersoll_ross_SDE.sde(s, x, theta=1.0, k=1.0, xi=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.cox_ingersoll_ross_SDE.shapes

	
cox_ingersoll_ross_SDE.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.cox_ingersoll_ross_SDE.source_dj

	
cox_ingersoll_ross_SDE.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.cox_ingersoll_ross_SDE.source_dn

	
cox_ingersoll_ross_SDE.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.cox_ingersoll_ross_SDE.source_dt

	
cox_ingersoll_ross_SDE.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.cox_ingersoll_ross_SDE.source_dw

	
cox_ingersoll_ross_SDE.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.cox_ingersoll_ross_SDE.sources

	
cox_ingersoll_ross_SDE.sources = {'dw', 'dt'}

	

sdepy.cox_ingersoll_ross_SDE.store

	
cox_ingersoll_ross_SDE.store(i, k)

	See documentation of paths_generator.store

sdepy.cox_ingersoll_ross_process.A

	
cox_ingersoll_ross_process.A(t, x)

	See documentation integrator.A

sdepy.cox_ingersoll_ross_process.__call__

	
cox_ingersoll_ross_process.__call__(timeline)

	Run the simulation along the given timeline.

	Parameters

	
	timelinearray-like

	A one dimensional array of strictly increasing numbers,
defining the timeline of the simulation.

	Returns

	
	Simulation results, as specified by subclass methods.

	

sdepy.cox_ingersoll_ross_process.addaxis

	
cox_ingersoll_ross_process.addaxis = None

	

sdepy.cox_ingersoll_ross_process.args

	
cox_ingersoll_ross_process.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.cox_ingersoll_ross_process.begin

	
cox_ingersoll_ross_process.begin()

	See documentation of paths_generator.begin

sdepy.cox_ingersoll_ross_process.dZ

	
cox_ingersoll_ross_process.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.cox_ingersoll_ross_process.depth

	
cox_ingersoll_ross_process.depth = 2

	

sdepy.cox_ingersoll_ross_process.end

	
cox_ingersoll_ross_process.end()

	See documentation of paths_generator.end

sdepy.cox_ingersoll_ross_process.euler_next

	
cox_ingersoll_ross_process.euler_next()

	Euler-Maruyama integration step.

sdepy.cox_ingersoll_ross_process.exit

	
cox_ingersoll_ross_process.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.cox_ingersoll_ross_process.info_begin

	
cox_ingersoll_ross_process.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.cox_ingersoll_ross_process.info_end

	
cox_ingersoll_ross_process.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.cox_ingersoll_ross_process.info_next

	
cox_ingersoll_ross_process.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.cox_ingersoll_ross_process.info_store

	
cox_ingersoll_ross_process.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.cox_ingersoll_ross_process.init

	
cox_ingersoll_ross_process.init(t, out_x, x0=1.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.cox_ingersoll_ross_process.let

	
cox_ingersoll_ross_process.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.cox_ingersoll_ross_process.log

	
cox_ingersoll_ross_process.log = False

	

sdepy.cox_ingersoll_ross_process.more

	
cox_ingersoll_ross_process.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.cox_ingersoll_ross_process.next

	
cox_ingersoll_ross_process.next()

	See documentation of paths_generator.next

sdepy.cox_ingersoll_ross_process.pace

	
cox_ingersoll_ross_process.pace(timeline)

	Target integration steps for the current integration.

	Parameters

	
	timelinearray

	Requested simulation timeline, cast as an array of float data-type.

	Returns

	
	array

	Target time points to be touched during the simulation
(typically, more thinly spaced than the output time
points in timeline, based on the steps parameter),
to be merged with timeline.

	May be overridden by subclasses. For default behaviour,

	

	see paths_generator class documentation.

	

sdepy.cox_ingersoll_ross_process.q

	
cox_ingersoll_ross_process.q = None

	

sdepy.cox_ingersoll_ross_process.result

	
cox_ingersoll_ross_process.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.cox_ingersoll_ross_process.sde

	
cox_ingersoll_ross_process.sde(s, x, theta=1.0, k=1.0, xi=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.cox_ingersoll_ross_process.shapes

	
cox_ingersoll_ross_process.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.cox_ingersoll_ross_process.source_dj

	
cox_ingersoll_ross_process.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.cox_ingersoll_ross_process.source_dn

	
cox_ingersoll_ross_process.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.cox_ingersoll_ross_process.source_dt

	
cox_ingersoll_ross_process.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.cox_ingersoll_ross_process.source_dw

	
cox_ingersoll_ross_process.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.cox_ingersoll_ross_process.sources

	
cox_ingersoll_ross_process.sources = {'dw', 'dt'}

	

sdepy.cox_ingersoll_ross_process.store

	
cox_ingersoll_ross_process.store(i, k)

	See documentation of paths_generator.store

sdepy.cpoisson_source.size

	
cpoisson_source.size

	Returns the number of stored scalar values from previous
evaluations, or 0 for sources without memory.

sdepy.cpoisson_source.t

	
cpoisson_source.t

	Returns a copy of the time points at which source values
have been stored from previous evaluations, as an array,
or an empty array for sources without memory.

sdepy.even_cpoisson_source.__call__

	
even_cpoisson_source.__call__(t, dt=None)

	

sdepy.even_cpoisson_source.size

	
even_cpoisson_source.size

	Returns the number of stored scalar values from previous
evaluations, or 0 for sources without memory.

sdepy.even_cpoisson_source.t

	
even_cpoisson_source.t

	Returns a copy of the time points at which source values
have been stored from previous evaluations, as an array,
or an empty array for sources without memory.

sdepy.even_poisson_source.__call__

	
even_poisson_source.__call__(t, dt=None)

	

sdepy.even_poisson_source.size

	
even_poisson_source.size

	Returns the number of stored scalar values from previous
evaluations, or 0 for sources without memory.

sdepy.even_poisson_source.t

	
even_poisson_source.t

	Returns a copy of the time points at which source values
have been stored from previous evaluations, as an array,
or an empty array for sources without memory.

sdepy.full_heston_SDE.A

	
full_heston_SDE.A(t, X)

	See documentation of integrator.A

sdepy.full_heston_SDE.addaxis

	
full_heston_SDE.addaxis = False

	

sdepy.full_heston_SDE.args

	
full_heston_SDE.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.full_heston_SDE.begin

	
full_heston_SDE.begin()

	See documentation of paths_generator.begin

sdepy.full_heston_SDE.dZ

	
full_heston_SDE.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.full_heston_SDE.end

	
full_heston_SDE.end()

	See documentation of paths_generator.end

sdepy.full_heston_SDE.exit

	
full_heston_SDE.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.full_heston_SDE.info_begin

	
full_heston_SDE.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.full_heston_SDE.info_end

	
full_heston_SDE.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.full_heston_SDE.info_next

	
full_heston_SDE.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.full_heston_SDE.info_store

	
full_heston_SDE.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.full_heston_SDE.init

	
full_heston_SDE.init(s, out_X, x0=1.0, y0=1.0)

	See documentation of SDE.init

sdepy.full_heston_SDE.let

	
full_heston_SDE.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.full_heston_SDE.log

	
full_heston_SDE.log = False

	

sdepy.full_heston_SDE.more

	
full_heston_SDE.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.full_heston_SDE.next

	
full_heston_SDE.next()

	See documentation of paths_generator.next

sdepy.full_heston_SDE.pack

	
full_heston_SDE.pack(xs)

	Packs the given arrays (one per equation) into a single array.

	Parameters

	
	xslist of arrays

	List of self.q arrays to be packed according to the addaxis
attribute setting.

	Returns

	
	Xarray

	Array packing the given xs along its second-last dimension
(the last dimension enumerates paths).

sdepy.full_heston_SDE.q

	
full_heston_SDE.q = 2

	

sdepy.full_heston_SDE.result

	
full_heston_SDE.result(tt, xx)

	See documentation of SDE.result

sdepy.full_heston_SDE.sde

	
full_heston_SDE.sde(t, x, y, mu=0.0, sigma=1.0, theta=1.0, k=1.0, xi=1.0)

	Stochastic Differential Equations (SDEs) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	x, y, …arrays

	Values that each equation variable takes at time t.
There should be as many parameters as the number of
equations stated in self.q.

	sde_argszero or more arrays, as keyword arguments

	See documentation of SDE.sde.

	Returns

	
	sde_termslist of dict of arrays

	A list of dictionaries, one per equation.
See documentation of SDE.sde.

Notes

x, y, ... should be treated as read-only.

sdepy.full_heston_SDE.shapes

	
full_heston_SDE.shapes(vshape)

	See documentation of SDE.shapes

sdepy.full_heston_SDE.source_dj

	
full_heston_SDE.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.full_heston_SDE.source_dn

	
full_heston_SDE.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.full_heston_SDE.source_dt

	
full_heston_SDE.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.full_heston_SDE.source_dw

	
full_heston_SDE.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.full_heston_SDE.sources

	
full_heston_SDE.sources = {'dw', 'dt'}

	

sdepy.full_heston_SDE.store

	
full_heston_SDE.store(i, k)

	See documentation of paths_generator.store

sdepy.full_heston_SDE.unpack

	
full_heston_SDE.unpack(X)

	Unpacks the given array into multiple arrays
(one per equation).

	Parameters

	
	Xarray

	Array with a last dimension enumerating paths, and a second
last dimension to be unpacked according to the addaxis
attribute setting.

	Returns

	
	x, y, …list of arrays

	List of self.q arrays, unpacking the given X.

sdepy.full_heston_process.A

	
full_heston_process.A(t, X)

	See documentation of integrator.A

sdepy.full_heston_process.__call__

	
full_heston_process.__call__(timeline)

	Run the simulation along the given timeline.

	Parameters

	
	timelinearray-like

	A one dimensional array of strictly increasing numbers,
defining the timeline of the simulation.

	Returns

	
	Simulation results, as specified by subclass methods.

	

sdepy.full_heston_process.addaxis

	
full_heston_process.addaxis = False

	

sdepy.full_heston_process.args

	
full_heston_process.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.full_heston_process.begin

	
full_heston_process.begin()

	See documentation of paths_generator.begin

sdepy.full_heston_process.dZ

	
full_heston_process.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.full_heston_process.depth

	
full_heston_process.depth = 2

	

sdepy.full_heston_process.end

	
full_heston_process.end()

	See documentation of paths_generator.end

sdepy.full_heston_process.euler_next

	
full_heston_process.euler_next()

	Euler-Maruyama integration step.

sdepy.full_heston_process.exit

	
full_heston_process.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.full_heston_process.info_begin

	
full_heston_process.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.full_heston_process.info_end

	
full_heston_process.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.full_heston_process.info_next

	
full_heston_process.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.full_heston_process.info_store

	
full_heston_process.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.full_heston_process.init

	
full_heston_process.init(s, out_X, x0=1.0, y0=1.0)

	See documentation of SDE.init

sdepy.full_heston_process.let

	
full_heston_process.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.full_heston_process.log

	
full_heston_process.log = False

	

sdepy.full_heston_process.more

	
full_heston_process.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.full_heston_process.next

	
full_heston_process.next()

	See documentation of paths_generator.next

sdepy.full_heston_process.pace

	
full_heston_process.pace(timeline)

	Target integration steps for the current integration.

	Parameters

	
	timelinearray

	Requested simulation timeline, cast as an array of float data-type.

	Returns

	
	array

	Target time points to be touched during the simulation
(typically, more thinly spaced than the output time
points in timeline, based on the steps parameter),
to be merged with timeline.

	May be overridden by subclasses. For default behaviour,

	

	see paths_generator class documentation.

	

sdepy.full_heston_process.pack

	
full_heston_process.pack(xs)

	Packs the given arrays (one per equation) into a single array.

	Parameters

	
	xslist of arrays

	List of self.q arrays to be packed according to the addaxis
attribute setting.

	Returns

	
	Xarray

	Array packing the given xs along its second-last dimension
(the last dimension enumerates paths).

sdepy.full_heston_process.q

	
full_heston_process.q = 2

	

sdepy.full_heston_process.result

	
full_heston_process.result(tt, xx)

	See documentation of SDE.result

sdepy.full_heston_process.sde

	
full_heston_process.sde(t, x, y, mu=0.0, sigma=1.0, theta=1.0, k=1.0, xi=1.0)

	Stochastic Differential Equations (SDEs) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	x, y, …arrays

	Values that each equation variable takes at time t.
There should be as many parameters as the number of
equations stated in self.q.

	sde_argszero or more arrays, as keyword arguments

	See documentation of SDE.sde.

	Returns

	
	sde_termslist of dict of arrays

	A list of dictionaries, one per equation.
See documentation of SDE.sde.

Notes

x, y, ... should be treated as read-only.

sdepy.full_heston_process.shapes

	
full_heston_process.shapes(vshape)

	See documentation of SDE.shapes

sdepy.full_heston_process.source_dj

	
full_heston_process.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.full_heston_process.source_dn

	
full_heston_process.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.full_heston_process.source_dt

	
full_heston_process.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.full_heston_process.source_dw

	
full_heston_process.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.full_heston_process.sources

	
full_heston_process.sources = {'dw', 'dt'}

	

sdepy.full_heston_process.store

	
full_heston_process.store(i, k)

	See documentation of paths_generator.store

sdepy.full_heston_process.unpack

	
full_heston_process.unpack(X)

	Unpacks the given array into multiple arrays
(one per equation).

	Parameters

	
	Xarray

	Array with a last dimension enumerating paths, and a second
last dimension to be unpacked according to the addaxis
attribute setting.

	Returns

	
	x, y, …list of arrays

	List of self.q arrays, unpacking the given X.

sdepy.heston_SDE.A

	
heston_SDE.A(t, X)

	See documentation of integrator.A

sdepy.heston_SDE.addaxis

	
heston_SDE.addaxis = False

	

sdepy.heston_SDE.args

	
heston_SDE.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.heston_SDE.begin

	
heston_SDE.begin()

	See documentation of paths_generator.begin

sdepy.heston_SDE.dZ

	
heston_SDE.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.heston_SDE.end

	
heston_SDE.end()

	See documentation of paths_generator.end

sdepy.heston_SDE.exit

	
heston_SDE.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.heston_SDE.info_begin

	
heston_SDE.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.heston_SDE.info_end

	
heston_SDE.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.heston_SDE.info_next

	
heston_SDE.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.heston_SDE.info_store

	
heston_SDE.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.heston_SDE.init

	
heston_SDE.init(s, out_X, x0=1.0, y0=1.0)

	See documentation of SDE.init

sdepy.heston_SDE.let

	
heston_SDE.let(s, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.heston_SDE.log

	
heston_SDE.log = False

	

sdepy.heston_SDE.more

	
heston_SDE.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.heston_SDE.next

	
heston_SDE.next()

	See documentation of paths_generator.next

sdepy.heston_SDE.pack

	
heston_SDE.pack(xs)

	Packs the given arrays (one per equation) into a single array.

	Parameters

	
	xslist of arrays

	List of self.q arrays to be packed according to the addaxis
attribute setting.

	Returns

	
	Xarray

	Array packing the given xs along its second-last dimension
(the last dimension enumerates paths).

sdepy.heston_SDE.q

	
heston_SDE.q = 2

	

sdepy.heston_SDE.result

	
heston_SDE.result(tt, xx)

	See documentation of SDE.result

sdepy.heston_SDE.sde

	
heston_SDE.sde(t, x, y, mu=0.0, sigma=1.0, theta=1.0, k=1.0, xi=1.0)

	Stochastic Differential Equations (SDEs) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	x, y, …arrays

	Values that each equation variable takes at time t.
There should be as many parameters as the number of
equations stated in self.q.

	sde_argszero or more arrays, as keyword arguments

	See documentation of SDE.sde.

	Returns

	
	sde_termslist of dict of arrays

	A list of dictionaries, one per equation.
See documentation of SDE.sde.

Notes

x, y, ... should be treated as read-only.

sdepy.heston_SDE.shapes

	
heston_SDE.shapes(vshape)

	See documentation of SDE.shapes

sdepy.heston_SDE.source_dj

	
heston_SDE.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.heston_SDE.source_dn

	
heston_SDE.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.heston_SDE.source_dt

	
heston_SDE.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.heston_SDE.source_dw

	
heston_SDE.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.heston_SDE.sources

	
heston_SDE.sources = {'dw', 'dt'}

	

sdepy.heston_SDE.store

	
heston_SDE.store(i, k)

	See documentation of paths_generator.store

sdepy.heston_SDE.unpack

	
heston_SDE.unpack(X)

	Unpacks the given array into multiple arrays
(one per equation).

	Parameters

	
	Xarray

	Array with a last dimension enumerating paths, and a second
last dimension to be unpacked according to the addaxis
attribute setting.

	Returns

	
	x, y, …list of arrays

	List of self.q arrays, unpacking the given X.

sdepy.heston_log_chf.__call__

	
heston_log_chf.__call__(u, *, x0=1.0, mu=0.0, sigma=1.0, y0=1.0, theta=1.0, k=1.0, xi=1.0, rho=0.0)

	

sdepy.heston_log_chf.params

	
heston_log_chf.params

	

sdepy.heston_log_mean.__call__

	
heston_log_mean.__call__(*, x0=1.0, mu=0.0, sigma=1.0, y0=1.0, theta=1.0, k=1.0, xi=1.0, rho=0.0)

	

sdepy.heston_log_mean.params

	
heston_log_mean.params

	

sdepy.heston_log_pdf.__call__

	
heston_log_pdf.__call__(logx, *, x0=1.0, mu=0.0, sigma=1.0, y0=1.0, theta=1.0, k=1.0, xi=1.0, rho=0.0)

	

sdepy.heston_log_pdf.params

	
heston_log_pdf.params

	

sdepy.heston_log_std.__call__

	
heston_log_std.__call__(*, x0=1.0, mu=0.0, sigma=1.0, y0=1.0, theta=1.0, k=1.0, xi=1.0, rho=0.0)

	

sdepy.heston_log_std.params

	
heston_log_std.params

	

sdepy.heston_log_var.__call__

	
heston_log_var.__call__(*, x0=1.0, mu=0.0, sigma=1.0, y0=1.0, theta=1.0, k=1.0, xi=1.0, rho=0.0)

	

sdepy.heston_log_var.params

	
heston_log_var.params

	

sdepy.heston_process.A

	
heston_process.A(t, X)

	See documentation of integrator.A

sdepy.heston_process.__call__

	
heston_process.__call__(timeline)

	Run the simulation along the given timeline.

	Parameters

	
	timelinearray-like

	A one dimensional array of strictly increasing numbers,
defining the timeline of the simulation.

	Returns

	
	Simulation results, as specified by subclass methods.

	

sdepy.heston_process.addaxis

	
heston_process.addaxis = False

	

sdepy.heston_process.args

	
heston_process.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.heston_process.begin

	
heston_process.begin()

	See documentation of paths_generator.begin

sdepy.heston_process.dZ

	
heston_process.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.heston_process.depth

	
heston_process.depth = 2

	

sdepy.heston_process.end

	
heston_process.end()

	See documentation of paths_generator.end

sdepy.heston_process.euler_next

	
heston_process.euler_next()

	Euler-Maruyama integration step.

sdepy.heston_process.exit

	
heston_process.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.heston_process.info_begin

	
heston_process.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.heston_process.info_end

	
heston_process.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.heston_process.info_next

	
heston_process.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.heston_process.info_store

	
heston_process.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.heston_process.init

	
heston_process.init(s, out_X, x0=1.0, y0=1.0)

	See documentation of SDE.init

sdepy.heston_process.let

	
heston_process.let(s, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.heston_process.log

	
heston_process.log = False

	

sdepy.heston_process.more

	
heston_process.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.heston_process.next

	
heston_process.next()

	See documentation of paths_generator.next

sdepy.heston_process.pace

	
heston_process.pace(timeline)

	Target integration steps for the current integration.

	Parameters

	
	timelinearray

	Requested simulation timeline, cast as an array of float data-type.

	Returns

	
	array

	Target time points to be touched during the simulation
(typically, more thinly spaced than the output time
points in timeline, based on the steps parameter),
to be merged with timeline.

	May be overridden by subclasses. For default behaviour,

	

	see paths_generator class documentation.

	

sdepy.heston_process.pack

	
heston_process.pack(xs)

	Packs the given arrays (one per equation) into a single array.

	Parameters

	
	xslist of arrays

	List of self.q arrays to be packed according to the addaxis
attribute setting.

	Returns

	
	Xarray

	Array packing the given xs along its second-last dimension
(the last dimension enumerates paths).

sdepy.heston_process.q

	
heston_process.q = 2

	

sdepy.heston_process.result

	
heston_process.result(tt, xx)

	See documentation of SDE.result

sdepy.heston_process.sde

	
heston_process.sde(t, x, y, mu=0.0, sigma=1.0, theta=1.0, k=1.0, xi=1.0)

	Stochastic Differential Equations (SDEs) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	x, y, …arrays

	Values that each equation variable takes at time t.
There should be as many parameters as the number of
equations stated in self.q.

	sde_argszero or more arrays, as keyword arguments

	See documentation of SDE.sde.

	Returns

	
	sde_termslist of dict of arrays

	A list of dictionaries, one per equation.
See documentation of SDE.sde.

Notes

x, y, ... should be treated as read-only.

sdepy.heston_process.shapes

	
heston_process.shapes(vshape)

	See documentation of SDE.shapes

sdepy.heston_process.source_dj

	
heston_process.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.heston_process.source_dn

	
heston_process.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.heston_process.source_dt

	
heston_process.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.heston_process.source_dw

	
heston_process.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.heston_process.sources

	
heston_process.sources = {'dw', 'dt'}

	

sdepy.heston_process.store

	
heston_process.store(i, k)

	See documentation of paths_generator.store

sdepy.heston_process.unpack

	
heston_process.unpack(X)

	Unpacks the given array into multiple arrays
(one per equation).

	Parameters

	
	Xarray

	Array with a last dimension enumerating paths, and a second
last dimension to be unpacked according to the addaxis
attribute setting.

	Returns

	
	x, y, …list of arrays

	List of self.q arrays, unpacking the given X.

sdepy.hull_white_1factor_process.A

	
hull_white_1factor_process.A(t, x)

	See documentation integrator.A

sdepy.hull_white_1factor_process.__call__

	
hull_white_1factor_process.__call__(timeline)

	Run the simulation along the given timeline.

	Parameters

	
	timelinearray-like

	A one dimensional array of strictly increasing numbers,
defining the timeline of the simulation.

	Returns

	
	Simulation results, as specified by subclass methods.

	

sdepy.hull_white_1factor_process.addaxis

	
hull_white_1factor_process.addaxis = None

	

sdepy.hull_white_1factor_process.args

	
hull_white_1factor_process.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.hull_white_1factor_process.begin

	
hull_white_1factor_process.begin()

	See documentation of paths_generator.begin

sdepy.hull_white_1factor_process.dZ

	
hull_white_1factor_process.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.hull_white_1factor_process.depth

	
hull_white_1factor_process.depth = 2

	

sdepy.hull_white_1factor_process.end

	
hull_white_1factor_process.end()

	See documentation of paths_generator.end

sdepy.hull_white_1factor_process.euler_next

	
hull_white_1factor_process.euler_next()

	Euler-Maruyama integration step.

sdepy.hull_white_1factor_process.exit

	
hull_white_1factor_process.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.hull_white_1factor_process.info_begin

	
hull_white_1factor_process.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.hull_white_1factor_process.info_end

	
hull_white_1factor_process.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.hull_white_1factor_process.info_next

	
hull_white_1factor_process.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.hull_white_1factor_process.info_store

	
hull_white_1factor_process.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.hull_white_1factor_process.init

	
hull_white_1factor_process.init(s, out_x, x0=0.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.hull_white_1factor_process.let

	
hull_white_1factor_process.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.hull_white_1factor_process.log

	
hull_white_1factor_process.log = False

	

sdepy.hull_white_1factor_process.more

	
hull_white_1factor_process.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.hull_white_1factor_process.next

	
hull_white_1factor_process.next()

	See documentation of paths_generator.next

sdepy.hull_white_1factor_process.pace

	
hull_white_1factor_process.pace(timeline)

	Target integration steps for the current integration.

	Parameters

	
	timelinearray

	Requested simulation timeline, cast as an array of float data-type.

	Returns

	
	array

	Target time points to be touched during the simulation
(typically, more thinly spaced than the output time
points in timeline, based on the steps parameter),
to be merged with timeline.

	May be overridden by subclasses. For default behaviour,

	

	see paths_generator class documentation.

	

sdepy.hull_white_1factor_process.q

	
hull_white_1factor_process.q = None

	

sdepy.hull_white_1factor_process.result

	
hull_white_1factor_process.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.hull_white_1factor_process.sde

	
hull_white_1factor_process.sde(s, x, theta=0.0, k=1.0, sigma=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.hull_white_1factor_process.shapes

	
hull_white_1factor_process.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.hull_white_1factor_process.source_dj

	
hull_white_1factor_process.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.hull_white_1factor_process.source_dn

	
hull_white_1factor_process.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.hull_white_1factor_process.source_dt

	
hull_white_1factor_process.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.hull_white_1factor_process.source_dw

	
hull_white_1factor_process.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.hull_white_1factor_process.sources

	
hull_white_1factor_process.sources = {'dw', 'dt'}

	

sdepy.hull_white_1factor_process.store

	
hull_white_1factor_process.store(i, k)

	See documentation of paths_generator.store

sdepy.hull_white_SDE.A

	
hull_white_SDE.A(t, x)

	See documentation integrator.A

sdepy.hull_white_SDE.addaxis

	
hull_white_SDE.addaxis = None

	

sdepy.hull_white_SDE.args

	
hull_white_SDE.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.hull_white_SDE.begin

	
hull_white_SDE.begin()

	See documentation of paths_generator.begin

sdepy.hull_white_SDE.dZ

	
hull_white_SDE.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.hull_white_SDE.end

	
hull_white_SDE.end()

	See documentation of paths_generator.end

sdepy.hull_white_SDE.exit

	
hull_white_SDE.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.hull_white_SDE.info_begin

	
hull_white_SDE.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.hull_white_SDE.info_end

	
hull_white_SDE.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.hull_white_SDE.info_next

	
hull_white_SDE.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.hull_white_SDE.info_store

	
hull_white_SDE.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.hull_white_SDE.init

	
hull_white_SDE.init(s, out_x, x0=0.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.hull_white_SDE.let

	
hull_white_SDE.let(s, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.hull_white_SDE.log

	
hull_white_SDE.log = False

	

sdepy.hull_white_SDE.more

	
hull_white_SDE.more(factors=1)

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.hull_white_SDE.next

	
hull_white_SDE.next()

	See documentation of paths_generator.next

sdepy.hull_white_SDE.q

	
hull_white_SDE.q = None

	

sdepy.hull_white_SDE.result

	
hull_white_SDE.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.hull_white_SDE.sde

	
hull_white_SDE.sde(s, x, theta=0.0, k=1.0, sigma=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.hull_white_SDE.shapes

	
hull_white_SDE.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.hull_white_SDE.source_dj

	
hull_white_SDE.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.hull_white_SDE.source_dn

	
hull_white_SDE.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.hull_white_SDE.source_dt

	
hull_white_SDE.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.hull_white_SDE.source_dw

	
hull_white_SDE.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.hull_white_SDE.sources

	
hull_white_SDE.sources = {'dw', 'dt'}

	

sdepy.hull_white_SDE.store

	
hull_white_SDE.store(i, k)

	See documentation of paths_generator.store

sdepy.hull_white_process.A

	
hull_white_process.A(t, x)

	See documentation integrator.A

sdepy.hull_white_process.__call__

	
hull_white_process.__call__(timeline)

	Run the simulation along the given timeline.

	Parameters

	
	timelinearray-like

	A one dimensional array of strictly increasing numbers,
defining the timeline of the simulation.

	Returns

	
	Simulation results, as specified by subclass methods.

	

sdepy.hull_white_process.addaxis

	
hull_white_process.addaxis = None

	

sdepy.hull_white_process.args

	
hull_white_process.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.hull_white_process.begin

	
hull_white_process.begin()

	See documentation of paths_generator.begin

sdepy.hull_white_process.dZ

	
hull_white_process.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.hull_white_process.depth

	
hull_white_process.depth = 2

	

sdepy.hull_white_process.end

	
hull_white_process.end()

	See documentation of paths_generator.end

sdepy.hull_white_process.euler_next

	
hull_white_process.euler_next()

	Euler-Maruyama integration step.

sdepy.hull_white_process.exit

	
hull_white_process.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.hull_white_process.info_begin

	
hull_white_process.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.hull_white_process.info_end

	
hull_white_process.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.hull_white_process.info_next

	
hull_white_process.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.hull_white_process.info_store

	
hull_white_process.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.hull_white_process.init

	
hull_white_process.init(s, out_x, x0=0.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.hull_white_process.let

	
hull_white_process.let(s, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.hull_white_process.log

	
hull_white_process.log = False

	

sdepy.hull_white_process.more

	
hull_white_process.more(factors=1)

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.hull_white_process.next

	
hull_white_process.next()

	See documentation of paths_generator.next

sdepy.hull_white_process.pace

	
hull_white_process.pace(timeline)

	Target integration steps for the current integration.

	Parameters

	
	timelinearray

	Requested simulation timeline, cast as an array of float data-type.

	Returns

	
	array

	Target time points to be touched during the simulation
(typically, more thinly spaced than the output time
points in timeline, based on the steps parameter),
to be merged with timeline.

	May be overridden by subclasses. For default behaviour,

	

	see paths_generator class documentation.

	

sdepy.hull_white_process.q

	
hull_white_process.q = None

	

sdepy.hull_white_process.result

	
hull_white_process.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.hull_white_process.sde

	
hull_white_process.sde(s, x, theta=0.0, k=1.0, sigma=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.hull_white_process.shapes

	
hull_white_process.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.hull_white_process.source_dj

	
hull_white_process.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.hull_white_process.source_dn

	
hull_white_process.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.hull_white_process.source_dt

	
hull_white_process.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.hull_white_process.source_dw

	
hull_white_process.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.hull_white_process.sources

	
hull_white_process.sources = {'dw', 'dt'}

	

sdepy.hull_white_process.store

	
hull_white_process.store(i, k)

	See documentation of paths_generator.store

sdepy.hw2f_cdf.__call__

	
hw2f_cdf.__call__(x, *, x0=(0.0, 0.0), theta=(0.0, 0.0), k=(1.0, 1.0), sigma=(1.0, 1.0), rho=0.0)

	

sdepy.hw2f_cdf.params

	
hw2f_cdf.params

	

sdepy.hw2f_mean.__call__

	
hw2f_mean.__call__(*, x0=(0.0, 0.0), theta=(0.0, 0.0), k=(1.0, 1.0), sigma=(1.0, 1.0), rho=0.0)

	

sdepy.hw2f_mean.params

	
hw2f_mean.params

	

sdepy.hw2f_pdf.__call__

	
hw2f_pdf.__call__(x, *, x0=(0.0, 0.0), theta=(0.0, 0.0), k=(1.0, 1.0), sigma=(1.0, 1.0), rho=0.0)

	

sdepy.hw2f_pdf.params

	
hw2f_pdf.params

	

sdepy.hw2f_std.__call__

	
hw2f_std.__call__(*, x0=(0.0, 0.0), theta=(0.0, 0.0), k=(1.0, 1.0), sigma=(1.0, 1.0), rho=0.0)

	

sdepy.hw2f_std.params

	
hw2f_std.params

	

sdepy.hw2f_var.__call__

	
hw2f_var.__call__(*, x0=(0.0, 0.0), theta=(0.0, 0.0), k=(1.0, 1.0), sigma=(1.0, 1.0), rho=0.0)

	

sdepy.hw2f_var.params

	
hw2f_var.params

	

sdepy.integrator.__call__

	
integrator.__call__(timeline)

	Run the simulation along the given timeline.

	Parameters

	
	timelinearray-like

	A one dimensional array of strictly increasing numbers,
defining the timeline of the simulation.

	Returns

	
	Simulation results, as specified by subclass methods.

	

sdepy.integrator.begin

	
integrator.begin()

	Set initial conditions.

Given the time points sw[0], ..., sw[depth - 2],
should define and store in the working space
the corresponding initial values xw[0], ..., xw[depth - 2].
Note that when begin gets called,
sw[depth - 1] and xw[depth - 1] are undefined and will be
respectively set, and computed, at the first iteration.

Notes

It is called once for each backwards and forwards simulation,
after memory allocation and before starting the iteration along
the time points in steps_tt.

Outline of expected code for depth=2:

access itervars
iv = self.itervars
sw, xw = iv['sw'], iv['xw']

this is the initial time, taken from the
simulation timeline
t0 = sw[0]
assert t0 == iv['steps_tt'][0] == iv['tt'][0]

store the initial condition
xw[0][...] = 1.

Must be provided by subclasses.

sdepy.integrator.depth

	
integrator.depth = 2

	

sdepy.integrator.end

	
integrator.end()

	End of iteration optional tasks.

It is called once for each backwards and forwards simulation,
once the final point in the output timeline has been reached
and the simulation ends.

After it is called, itervars are deleted.

May be provided by subclasses.

sdepy.integrator.exit

	
integrator.exit(tt, xx)

	See documentation of paths_generator.exit

sdepy.integrator.pace

	
integrator.pace(timeline)

	Target integration steps for the current integration.

	Parameters

	
	timelinearray

	Requested simulation timeline, cast as an array of float data-type.

	Returns

	
	array

	Target time points to be touched during the simulation
(typically, more thinly spaced than the output time
points in timeline, based on the steps parameter),
to be merged with timeline.

	May be overridden by subclasses. For default behaviour,

	

	see paths_generator class documentation.

	

sdepy.integrator.store

	
integrator.store(i, k)

	Store the current integration step into the integration output.

Should take the k-th value in the working space xw,
transform it if need be, and store it as the output
xx[i] at the output time point tt[i].

	Parameters

	
	iint

	Index of the output timeline point to set as output.

	kint

	Index of the working space point to use as input.

Notes

It is called initially to store the initial values that belong
to the output timeline, among those put into the working space
by begin, and later during the iteration, each time the simulation
touches a point on the output timeline.

Outline of expected code for xshape == wshape and
an exponentiation transformation:

access itervars
iv = self.itervars
sw, xw = iv['sw'], iv['xw']
xx = iv['xx']

this is the current time, also found
along the output timeline
s = sw[k]
assert s == iv['tt'][i]

transform and store
np.exp(xw[k], out=xx[i])

Must be provided by subclasses.

sdepy.jumpdiff_SDE.A

	
jumpdiff_SDE.A(t, x)

	See documentation integrator.A

sdepy.jumpdiff_SDE.addaxis

	
jumpdiff_SDE.addaxis = None

	

sdepy.jumpdiff_SDE.args

	
jumpdiff_SDE.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.jumpdiff_SDE.begin

	
jumpdiff_SDE.begin()

	See documentation of paths_generator.begin

sdepy.jumpdiff_SDE.dZ

	
jumpdiff_SDE.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.jumpdiff_SDE.end

	
jumpdiff_SDE.end()

	See documentation of paths_generator.end

sdepy.jumpdiff_SDE.exit

	
jumpdiff_SDE.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.jumpdiff_SDE.info_begin

	
jumpdiff_SDE.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.jumpdiff_SDE.info_end

	
jumpdiff_SDE.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.jumpdiff_SDE.info_next

	
jumpdiff_SDE.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.jumpdiff_SDE.info_store

	
jumpdiff_SDE.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.jumpdiff_SDE.init

	
jumpdiff_SDE.init(t, out_x, x0=1.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.jumpdiff_SDE.let

	
jumpdiff_SDE.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.jumpdiff_SDE.log

	
jumpdiff_SDE.log = True

	

sdepy.jumpdiff_SDE.more

	
jumpdiff_SDE.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.jumpdiff_SDE.next

	
jumpdiff_SDE.next()

	See documentation of paths_generator.next

sdepy.jumpdiff_SDE.q

	
jumpdiff_SDE.q = None

	

sdepy.jumpdiff_SDE.result

	
jumpdiff_SDE.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.jumpdiff_SDE.sde

	
jumpdiff_SDE.sde(s, x, mu=0.0, sigma=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.jumpdiff_SDE.shapes

	
jumpdiff_SDE.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.jumpdiff_SDE.source_dj

	
jumpdiff_SDE.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.jumpdiff_SDE.source_dn

	
jumpdiff_SDE.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.jumpdiff_SDE.source_dt

	
jumpdiff_SDE.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.jumpdiff_SDE.source_dw

	
jumpdiff_SDE.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.jumpdiff_SDE.sources

	
jumpdiff_SDE.sources = {'dw', 'dj', 'dt'}

	

sdepy.jumpdiff_SDE.store

	
jumpdiff_SDE.store(i, k)

	See documentation of paths_generator.store

sdepy.jumpdiff_process.A

	
jumpdiff_process.A(t, x)

	See documentation integrator.A

sdepy.jumpdiff_process.__call__

	
jumpdiff_process.__call__(timeline)

	Run the simulation along the given timeline.

	Parameters

	
	timelinearray-like

	A one dimensional array of strictly increasing numbers,
defining the timeline of the simulation.

	Returns

	
	Simulation results, as specified by subclass methods.

	

sdepy.jumpdiff_process.addaxis

	
jumpdiff_process.addaxis = None

	

sdepy.jumpdiff_process.args

	
jumpdiff_process.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.jumpdiff_process.begin

	
jumpdiff_process.begin()

	See documentation of paths_generator.begin

sdepy.jumpdiff_process.dZ

	
jumpdiff_process.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.jumpdiff_process.depth

	
jumpdiff_process.depth = 2

	

sdepy.jumpdiff_process.end

	
jumpdiff_process.end()

	See documentation of paths_generator.end

sdepy.jumpdiff_process.euler_next

	
jumpdiff_process.euler_next()

	Euler-Maruyama integration step.

sdepy.jumpdiff_process.exit

	
jumpdiff_process.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.jumpdiff_process.info_begin

	
jumpdiff_process.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.jumpdiff_process.info_end

	
jumpdiff_process.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.jumpdiff_process.info_next

	
jumpdiff_process.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.jumpdiff_process.info_store

	
jumpdiff_process.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.jumpdiff_process.init

	
jumpdiff_process.init(t, out_x, x0=1.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.jumpdiff_process.let

	
jumpdiff_process.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.jumpdiff_process.log

	
jumpdiff_process.log = True

	

sdepy.jumpdiff_process.more

	
jumpdiff_process.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.jumpdiff_process.next

	
jumpdiff_process.next()

	See documentation of paths_generator.next

sdepy.jumpdiff_process.pace

	
jumpdiff_process.pace(timeline)

	Target integration steps for the current integration.

	Parameters

	
	timelinearray

	Requested simulation timeline, cast as an array of float data-type.

	Returns

	
	array

	Target time points to be touched during the simulation
(typically, more thinly spaced than the output time
points in timeline, based on the steps parameter),
to be merged with timeline.

	May be overridden by subclasses. For default behaviour,

	

	see paths_generator class documentation.

	

sdepy.jumpdiff_process.q

	
jumpdiff_process.q = None

	

sdepy.jumpdiff_process.result

	
jumpdiff_process.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.jumpdiff_process.sde

	
jumpdiff_process.sde(s, x, mu=0.0, sigma=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.jumpdiff_process.shapes

	
jumpdiff_process.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.jumpdiff_process.source_dj

	
jumpdiff_process.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.jumpdiff_process.source_dn

	
jumpdiff_process.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.jumpdiff_process.source_dt

	
jumpdiff_process.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.jumpdiff_process.source_dw

	
jumpdiff_process.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.jumpdiff_process.sources

	
jumpdiff_process.sources = {'dw', 'dj', 'dt'}

	

sdepy.jumpdiff_process.store

	
jumpdiff_process.store(i, k)

	See documentation of paths_generator.store

sdepy.kou_jumpdiff_SDE.A

	
kou_jumpdiff_SDE.A(t, x)

	See documentation integrator.A

sdepy.kou_jumpdiff_SDE.addaxis

	
kou_jumpdiff_SDE.addaxis = None

	

sdepy.kou_jumpdiff_SDE.args

	
kou_jumpdiff_SDE.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.kou_jumpdiff_SDE.begin

	
kou_jumpdiff_SDE.begin()

	See documentation of paths_generator.begin

sdepy.kou_jumpdiff_SDE.dZ

	
kou_jumpdiff_SDE.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.kou_jumpdiff_SDE.end

	
kou_jumpdiff_SDE.end()

	See documentation of paths_generator.end

sdepy.kou_jumpdiff_SDE.exit

	
kou_jumpdiff_SDE.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.kou_jumpdiff_SDE.info_begin

	
kou_jumpdiff_SDE.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.kou_jumpdiff_SDE.info_end

	
kou_jumpdiff_SDE.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.kou_jumpdiff_SDE.info_next

	
kou_jumpdiff_SDE.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.kou_jumpdiff_SDE.info_store

	
kou_jumpdiff_SDE.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.kou_jumpdiff_SDE.init

	
kou_jumpdiff_SDE.init(t, out_x, x0=1.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.kou_jumpdiff_SDE.let

	
kou_jumpdiff_SDE.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.kou_jumpdiff_SDE.log

	
kou_jumpdiff_SDE.log = True

	

sdepy.kou_jumpdiff_SDE.more

	
kou_jumpdiff_SDE.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.kou_jumpdiff_SDE.next

	
kou_jumpdiff_SDE.next()

	See documentation of paths_generator.next

sdepy.kou_jumpdiff_SDE.q

	
kou_jumpdiff_SDE.q = None

	

sdepy.kou_jumpdiff_SDE.result

	
kou_jumpdiff_SDE.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.kou_jumpdiff_SDE.sde

	
kou_jumpdiff_SDE.sde(s, x, mu=0.0, sigma=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.kou_jumpdiff_SDE.shapes

	
kou_jumpdiff_SDE.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.kou_jumpdiff_SDE.source_dj

	
kou_jumpdiff_SDE.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, a=0.5, b=0.5, pa=0.5)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.kou_jumpdiff_SDE.source_dn

	
kou_jumpdiff_SDE.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.kou_jumpdiff_SDE.source_dt

	
kou_jumpdiff_SDE.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.kou_jumpdiff_SDE.source_dw

	
kou_jumpdiff_SDE.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.kou_jumpdiff_SDE.sources

	
kou_jumpdiff_SDE.sources = {'dw', 'dj', 'dt'}

	

sdepy.kou_jumpdiff_SDE.store

	
kou_jumpdiff_SDE.store(i, k)

	See documentation of paths_generator.store

sdepy.kou_jumpdiff_process.A

	
kou_jumpdiff_process.A(t, x)

	See documentation integrator.A

sdepy.kou_jumpdiff_process.__call__

	
kou_jumpdiff_process.__call__(timeline)

	Run the simulation along the given timeline.

	Parameters

	
	timelinearray-like

	A one dimensional array of strictly increasing numbers,
defining the timeline of the simulation.

	Returns

	
	Simulation results, as specified by subclass methods.

	

sdepy.kou_jumpdiff_process.addaxis

	
kou_jumpdiff_process.addaxis = None

	

sdepy.kou_jumpdiff_process.args

	
kou_jumpdiff_process.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.kou_jumpdiff_process.begin

	
kou_jumpdiff_process.begin()

	See documentation of paths_generator.begin

sdepy.kou_jumpdiff_process.dZ

	
kou_jumpdiff_process.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.kou_jumpdiff_process.depth

	
kou_jumpdiff_process.depth = 2

	

sdepy.kou_jumpdiff_process.end

	
kou_jumpdiff_process.end()

	See documentation of paths_generator.end

sdepy.kou_jumpdiff_process.euler_next

	
kou_jumpdiff_process.euler_next()

	Euler-Maruyama integration step.

sdepy.kou_jumpdiff_process.exit

	
kou_jumpdiff_process.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.kou_jumpdiff_process.info_begin

	
kou_jumpdiff_process.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.kou_jumpdiff_process.info_end

	
kou_jumpdiff_process.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.kou_jumpdiff_process.info_next

	
kou_jumpdiff_process.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.kou_jumpdiff_process.info_store

	
kou_jumpdiff_process.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.kou_jumpdiff_process.init

	
kou_jumpdiff_process.init(t, out_x, x0=1.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.kou_jumpdiff_process.let

	
kou_jumpdiff_process.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.kou_jumpdiff_process.log

	
kou_jumpdiff_process.log = True

	

sdepy.kou_jumpdiff_process.more

	
kou_jumpdiff_process.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.kou_jumpdiff_process.next

	
kou_jumpdiff_process.next()

	See documentation of paths_generator.next

sdepy.kou_jumpdiff_process.pace

	
kou_jumpdiff_process.pace(timeline)

	Target integration steps for the current integration.

	Parameters

	
	timelinearray

	Requested simulation timeline, cast as an array of float data-type.

	Returns

	
	array

	Target time points to be touched during the simulation
(typically, more thinly spaced than the output time
points in timeline, based on the steps parameter),
to be merged with timeline.

	May be overridden by subclasses. For default behaviour,

	

	see paths_generator class documentation.

	

sdepy.kou_jumpdiff_process.q

	
kou_jumpdiff_process.q = None

	

sdepy.kou_jumpdiff_process.result

	
kou_jumpdiff_process.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.kou_jumpdiff_process.sde

	
kou_jumpdiff_process.sde(s, x, mu=0.0, sigma=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.kou_jumpdiff_process.shapes

	
kou_jumpdiff_process.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.kou_jumpdiff_process.source_dj

	
kou_jumpdiff_process.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, a=0.5, b=0.5, pa=0.5)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.kou_jumpdiff_process.source_dn

	
kou_jumpdiff_process.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.kou_jumpdiff_process.source_dt

	
kou_jumpdiff_process.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.kou_jumpdiff_process.source_dw

	
kou_jumpdiff_process.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.kou_jumpdiff_process.sources

	
kou_jumpdiff_process.sources = {'dw', 'dj', 'dt'}

	

sdepy.kou_jumpdiff_process.store

	
kou_jumpdiff_process.store(i, k)

	See documentation of paths_generator.store

sdepy.kou_log_chf.__call__

	
kou_log_chf.__call__(u, *, x0=1.0, mu=0.0, sigma=1.0, lam=1.0, a=0.5, b=0.5, pa=0.5)

	

sdepy.kou_log_chf.params

	
kou_log_chf.params

	

sdepy.kou_log_pdf.__call__

	
kou_log_pdf.__call__(logx, *, x0=1.0, mu=0.0, sigma=1.0, lam=1.0, pa=0.5, a=0.5, b=0.5)

	

sdepy.kou_log_pdf.params

	
kou_log_pdf.params

	

sdepy.kou_mean.__call__

	
kou_mean.__call__(*, x0=1.0, mu=0.0, sigma=1.0, lam=1.0, a=0.5, b=0.5, pa=0.5)

	

sdepy.kou_mean.params

	
kou_mean.params

	

sdepy.lognorm_SDE.A

	
lognorm_SDE.A(t, x)

	See documentation integrator.A

sdepy.lognorm_SDE.addaxis

	
lognorm_SDE.addaxis = None

	

sdepy.lognorm_SDE.args

	
lognorm_SDE.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.lognorm_SDE.begin

	
lognorm_SDE.begin()

	See documentation of paths_generator.begin

sdepy.lognorm_SDE.dZ

	
lognorm_SDE.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.lognorm_SDE.end

	
lognorm_SDE.end()

	See documentation of paths_generator.end

sdepy.lognorm_SDE.exit

	
lognorm_SDE.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.lognorm_SDE.info_begin

	
lognorm_SDE.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.lognorm_SDE.info_end

	
lognorm_SDE.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.lognorm_SDE.info_next

	
lognorm_SDE.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.lognorm_SDE.info_store

	
lognorm_SDE.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.lognorm_SDE.init

	
lognorm_SDE.init(t, out_x, x0=1.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.lognorm_SDE.let

	
lognorm_SDE.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.lognorm_SDE.log

	
lognorm_SDE.log = True

	

sdepy.lognorm_SDE.more

	
lognorm_SDE.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.lognorm_SDE.next

	
lognorm_SDE.next()

	See documentation of paths_generator.next

sdepy.lognorm_SDE.q

	
lognorm_SDE.q = None

	

sdepy.lognorm_SDE.result

	
lognorm_SDE.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.lognorm_SDE.sde

	
lognorm_SDE.sde(t, x, mu=0.0, sigma=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.lognorm_SDE.shapes

	
lognorm_SDE.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.lognorm_SDE.source_dj

	
lognorm_SDE.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.lognorm_SDE.source_dn

	
lognorm_SDE.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.lognorm_SDE.source_dt

	
lognorm_SDE.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.lognorm_SDE.source_dw

	
lognorm_SDE.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.lognorm_SDE.sources

	
lognorm_SDE.sources = {'dw', 'dt'}

	

sdepy.lognorm_SDE.store

	
lognorm_SDE.store(i, k)

	See documentation of paths_generator.store

sdepy.lognorm_cdf.__call__

	
lognorm_cdf.__call__(x, *, x0=1.0, mu=0.0, sigma=1.0)

	

sdepy.lognorm_cdf.params

	
lognorm_cdf.params

	

sdepy.lognorm_log_chf.__call__

	
lognorm_log_chf.__call__(u, *, x0=1.0, mu=0.0, sigma=1.0)

	

sdepy.lognorm_log_chf.params

	
lognorm_log_chf.params

	

sdepy.lognorm_mean.__call__

	
lognorm_mean.__call__(*, x0=1.0, mu=0.0, sigma=1.0)

	

sdepy.lognorm_mean.params

	
lognorm_mean.params

	

sdepy.lognorm_pdf.__call__

	
lognorm_pdf.__call__(x, *, x0=1.0, mu=0.0, sigma=1.0)

	

sdepy.lognorm_pdf.params

	
lognorm_pdf.params

	

sdepy.lognorm_process.A

	
lognorm_process.A(t, x)

	See documentation integrator.A

sdepy.lognorm_process.__call__

	
lognorm_process.__call__(timeline)

	Run the simulation along the given timeline.

	Parameters

	
	timelinearray-like

	A one dimensional array of strictly increasing numbers,
defining the timeline of the simulation.

	Returns

	
	Simulation results, as specified by subclass methods.

	

sdepy.lognorm_process.addaxis

	
lognorm_process.addaxis = None

	

sdepy.lognorm_process.args

	
lognorm_process.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.lognorm_process.begin

	
lognorm_process.begin()

	See documentation of paths_generator.begin

sdepy.lognorm_process.dZ

	
lognorm_process.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.lognorm_process.depth

	
lognorm_process.depth = 2

	

sdepy.lognorm_process.end

	
lognorm_process.end()

	See documentation of paths_generator.end

sdepy.lognorm_process.euler_next

	
lognorm_process.euler_next()

	Euler-Maruyama integration step.

sdepy.lognorm_process.exit

	
lognorm_process.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.lognorm_process.info_begin

	
lognorm_process.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.lognorm_process.info_end

	
lognorm_process.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.lognorm_process.info_next

	
lognorm_process.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.lognorm_process.info_store

	
lognorm_process.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.lognorm_process.init

	
lognorm_process.init(t, out_x, x0=1.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.lognorm_process.let

	
lognorm_process.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.lognorm_process.log

	
lognorm_process.log = True

	

sdepy.lognorm_process.more

	
lognorm_process.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.lognorm_process.next

	
lognorm_process.next()

	See documentation of paths_generator.next

sdepy.lognorm_process.pace

	
lognorm_process.pace(timeline)

	Target integration steps for the current integration.

	Parameters

	
	timelinearray

	Requested simulation timeline, cast as an array of float data-type.

	Returns

	
	array

	Target time points to be touched during the simulation
(typically, more thinly spaced than the output time
points in timeline, based on the steps parameter),
to be merged with timeline.

	May be overridden by subclasses. For default behaviour,

	

	see paths_generator class documentation.

	

sdepy.lognorm_process.q

	
lognorm_process.q = None

	

sdepy.lognorm_process.result

	
lognorm_process.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.lognorm_process.sde

	
lognorm_process.sde(t, x, mu=0.0, sigma=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.lognorm_process.shapes

	
lognorm_process.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.lognorm_process.source_dj

	
lognorm_process.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.lognorm_process.source_dn

	
lognorm_process.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.lognorm_process.source_dt

	
lognorm_process.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.lognorm_process.source_dw

	
lognorm_process.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.lognorm_process.sources

	
lognorm_process.sources = {'dw', 'dt'}

	

sdepy.lognorm_process.store

	
lognorm_process.store(i, k)

	See documentation of paths_generator.store

sdepy.lognorm_std.__call__

	
lognorm_std.__call__(*, x0=1.0, mu=0.0, sigma=1.0)

	

sdepy.lognorm_std.params

	
lognorm_std.params

	

sdepy.lognorm_var.__call__

	
lognorm_var.__call__(*, x0=1.0, mu=0.0, sigma=1.0)

	

sdepy.lognorm_var.params

	
lognorm_var.params

	

sdepy.merton_jumpdiff_SDE.A

	
merton_jumpdiff_SDE.A(t, x)

	See documentation integrator.A

sdepy.merton_jumpdiff_SDE.addaxis

	
merton_jumpdiff_SDE.addaxis = None

	

sdepy.merton_jumpdiff_SDE.args

	
merton_jumpdiff_SDE.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.merton_jumpdiff_SDE.begin

	
merton_jumpdiff_SDE.begin()

	See documentation of paths_generator.begin

sdepy.merton_jumpdiff_SDE.dZ

	
merton_jumpdiff_SDE.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.merton_jumpdiff_SDE.end

	
merton_jumpdiff_SDE.end()

	See documentation of paths_generator.end

sdepy.merton_jumpdiff_SDE.exit

	
merton_jumpdiff_SDE.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.merton_jumpdiff_SDE.info_begin

	
merton_jumpdiff_SDE.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.merton_jumpdiff_SDE.info_end

	
merton_jumpdiff_SDE.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.merton_jumpdiff_SDE.info_next

	
merton_jumpdiff_SDE.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.merton_jumpdiff_SDE.info_store

	
merton_jumpdiff_SDE.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.merton_jumpdiff_SDE.init

	
merton_jumpdiff_SDE.init(t, out_x, x0=1.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.merton_jumpdiff_SDE.let

	
merton_jumpdiff_SDE.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.merton_jumpdiff_SDE.log

	
merton_jumpdiff_SDE.log = True

	

sdepy.merton_jumpdiff_SDE.more

	
merton_jumpdiff_SDE.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.merton_jumpdiff_SDE.next

	
merton_jumpdiff_SDE.next()

	See documentation of paths_generator.next

sdepy.merton_jumpdiff_SDE.q

	
merton_jumpdiff_SDE.q = None

	

sdepy.merton_jumpdiff_SDE.result

	
merton_jumpdiff_SDE.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.merton_jumpdiff_SDE.sde

	
merton_jumpdiff_SDE.sde(s, x, mu=0.0, sigma=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.merton_jumpdiff_SDE.shapes

	
merton_jumpdiff_SDE.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.merton_jumpdiff_SDE.source_dj

	
merton_jumpdiff_SDE.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, a=0.0, b=1.0)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.merton_jumpdiff_SDE.source_dn

	
merton_jumpdiff_SDE.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.merton_jumpdiff_SDE.source_dt

	
merton_jumpdiff_SDE.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.merton_jumpdiff_SDE.source_dw

	
merton_jumpdiff_SDE.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.merton_jumpdiff_SDE.sources

	
merton_jumpdiff_SDE.sources = {'dw', 'dj', 'dt'}

	

sdepy.merton_jumpdiff_SDE.store

	
merton_jumpdiff_SDE.store(i, k)

	See documentation of paths_generator.store

sdepy.merton_jumpdiff_process.A

	
merton_jumpdiff_process.A(t, x)

	See documentation integrator.A

sdepy.merton_jumpdiff_process.__call__

	
merton_jumpdiff_process.__call__(timeline)

	Run the simulation along the given timeline.

	Parameters

	
	timelinearray-like

	A one dimensional array of strictly increasing numbers,
defining the timeline of the simulation.

	Returns

	
	Simulation results, as specified by subclass methods.

	

sdepy.merton_jumpdiff_process.addaxis

	
merton_jumpdiff_process.addaxis = None

	

sdepy.merton_jumpdiff_process.args

	
merton_jumpdiff_process.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.merton_jumpdiff_process.begin

	
merton_jumpdiff_process.begin()

	See documentation of paths_generator.begin

sdepy.merton_jumpdiff_process.dZ

	
merton_jumpdiff_process.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.merton_jumpdiff_process.depth

	
merton_jumpdiff_process.depth = 2

	

sdepy.merton_jumpdiff_process.end

	
merton_jumpdiff_process.end()

	See documentation of paths_generator.end

sdepy.merton_jumpdiff_process.euler_next

	
merton_jumpdiff_process.euler_next()

	Euler-Maruyama integration step.

sdepy.merton_jumpdiff_process.exit

	
merton_jumpdiff_process.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.merton_jumpdiff_process.info_begin

	
merton_jumpdiff_process.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.merton_jumpdiff_process.info_end

	
merton_jumpdiff_process.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.merton_jumpdiff_process.info_next

	
merton_jumpdiff_process.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.merton_jumpdiff_process.info_store

	
merton_jumpdiff_process.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.merton_jumpdiff_process.init

	
merton_jumpdiff_process.init(t, out_x, x0=1.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.merton_jumpdiff_process.let

	
merton_jumpdiff_process.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.merton_jumpdiff_process.log

	
merton_jumpdiff_process.log = True

	

sdepy.merton_jumpdiff_process.more

	
merton_jumpdiff_process.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.merton_jumpdiff_process.next

	
merton_jumpdiff_process.next()

	See documentation of paths_generator.next

sdepy.merton_jumpdiff_process.pace

	
merton_jumpdiff_process.pace(timeline)

	Target integration steps for the current integration.

	Parameters

	
	timelinearray

	Requested simulation timeline, cast as an array of float data-type.

	Returns

	
	array

	Target time points to be touched during the simulation
(typically, more thinly spaced than the output time
points in timeline, based on the steps parameter),
to be merged with timeline.

	May be overridden by subclasses. For default behaviour,

	

	see paths_generator class documentation.

	

sdepy.merton_jumpdiff_process.q

	
merton_jumpdiff_process.q = None

	

sdepy.merton_jumpdiff_process.result

	
merton_jumpdiff_process.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.merton_jumpdiff_process.sde

	
merton_jumpdiff_process.sde(s, x, mu=0.0, sigma=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.merton_jumpdiff_process.shapes

	
merton_jumpdiff_process.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.merton_jumpdiff_process.source_dj

	
merton_jumpdiff_process.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, a=0.0, b=1.0)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.merton_jumpdiff_process.source_dn

	
merton_jumpdiff_process.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.merton_jumpdiff_process.source_dt

	
merton_jumpdiff_process.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.merton_jumpdiff_process.source_dw

	
merton_jumpdiff_process.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.merton_jumpdiff_process.sources

	
merton_jumpdiff_process.sources = {'dw', 'dj', 'dt'}

	

sdepy.merton_jumpdiff_process.store

	
merton_jumpdiff_process.store(i, k)

	See documentation of paths_generator.store

sdepy.mjd_log_chf.__call__

	
mjd_log_chf.__call__(u, *, x0=1.0, mu=0.0, sigma=1.0, lam=1.0, a=0.0, b=1.0)

	

sdepy.mjd_log_chf.params

	
mjd_log_chf.params

	

sdepy.mjd_log_pdf.__call__

	
mjd_log_pdf.__call__(logx, *, x0=1.0, mu=0.0, sigma=1.0, lam=1.0, a=0.0, b=1.0)

	

sdepy.mjd_log_pdf.params

	
mjd_log_pdf.params

	

sdepy.montecarlo.dh

	
montecarlo.dh

	Shortcut for the density_histogram method.

sdepy.montecarlo.e

	
montecarlo.e

	Shortcut for the stderr method.

sdepy.montecarlo.h

	
montecarlo.h

	Shortcut for the histogram method.

sdepy.montecarlo.m

	
montecarlo.m

	Shortcut for the mean method.

sdepy.montecarlo.outpaths

	
montecarlo.outpaths

	Data points fallen outside of the bins’ boundaries.

sdepy.montecarlo.paths

	
montecarlo.paths

	Number of cumulated sample data points
(0 for an empty instance).

sdepy.montecarlo.s

	
montecarlo.s

	Shortcut for the std method.

sdepy.montecarlo.shape

	
montecarlo.shape

	Shape of cumulated sample data set, rearranged with
averaging axis as last axis.

sdepy.montecarlo.stats

	
montecarlo.stats

	Dictionary of cumulated statistics.

sdepy.montecarlo.vshape

	
montecarlo.vshape

	Shape of cumulated sample data points.

sdepy.odd_wiener_source.__call__

	
odd_wiener_source.__call__(t, dt=None)

	

sdepy.odd_wiener_source.size

	
odd_wiener_source.size

	Returns the number of stored scalar values from previous
evaluations, or 0 for sources without memory.

sdepy.odd_wiener_source.t

	
odd_wiener_source.t

	Returns a copy of the time points at which source values
have been stored from previous evaluations, as an array,
or an empty array for sources without memory.

sdepy.ornstein_uhlenbeck_SDE.A

	
ornstein_uhlenbeck_SDE.A(t, x)

	See documentation integrator.A

sdepy.ornstein_uhlenbeck_SDE.addaxis

	
ornstein_uhlenbeck_SDE.addaxis = None

	

sdepy.ornstein_uhlenbeck_SDE.args

	
ornstein_uhlenbeck_SDE.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.ornstein_uhlenbeck_SDE.begin

	
ornstein_uhlenbeck_SDE.begin()

	See documentation of paths_generator.begin

sdepy.ornstein_uhlenbeck_SDE.dZ

	
ornstein_uhlenbeck_SDE.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.ornstein_uhlenbeck_SDE.end

	
ornstein_uhlenbeck_SDE.end()

	See documentation of paths_generator.end

sdepy.ornstein_uhlenbeck_SDE.exit

	
ornstein_uhlenbeck_SDE.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.ornstein_uhlenbeck_SDE.info_begin

	
ornstein_uhlenbeck_SDE.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.ornstein_uhlenbeck_SDE.info_end

	
ornstein_uhlenbeck_SDE.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.ornstein_uhlenbeck_SDE.info_next

	
ornstein_uhlenbeck_SDE.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.ornstein_uhlenbeck_SDE.info_store

	
ornstein_uhlenbeck_SDE.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.ornstein_uhlenbeck_SDE.init

	
ornstein_uhlenbeck_SDE.init(s, out_x, x0=0.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.ornstein_uhlenbeck_SDE.let

	
ornstein_uhlenbeck_SDE.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.ornstein_uhlenbeck_SDE.log

	
ornstein_uhlenbeck_SDE.log = False

	

sdepy.ornstein_uhlenbeck_SDE.more

	
ornstein_uhlenbeck_SDE.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.ornstein_uhlenbeck_SDE.next

	
ornstein_uhlenbeck_SDE.next()

	See documentation of paths_generator.next

sdepy.ornstein_uhlenbeck_SDE.q

	
ornstein_uhlenbeck_SDE.q = None

	

sdepy.ornstein_uhlenbeck_SDE.result

	
ornstein_uhlenbeck_SDE.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.ornstein_uhlenbeck_SDE.sde

	
ornstein_uhlenbeck_SDE.sde(s, x, theta=0.0, k=1.0, sigma=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.ornstein_uhlenbeck_SDE.shapes

	
ornstein_uhlenbeck_SDE.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.ornstein_uhlenbeck_SDE.source_dj

	
ornstein_uhlenbeck_SDE.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.ornstein_uhlenbeck_SDE.source_dn

	
ornstein_uhlenbeck_SDE.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.ornstein_uhlenbeck_SDE.source_dt

	
ornstein_uhlenbeck_SDE.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.ornstein_uhlenbeck_SDE.source_dw

	
ornstein_uhlenbeck_SDE.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.ornstein_uhlenbeck_SDE.sources

	
ornstein_uhlenbeck_SDE.sources = {'dw', 'dt'}

	

sdepy.ornstein_uhlenbeck_SDE.store

	
ornstein_uhlenbeck_SDE.store(i, k)

	See documentation of paths_generator.store

sdepy.ornstein_uhlenbeck_process.A

	
ornstein_uhlenbeck_process.A(t, x)

	See documentation integrator.A

sdepy.ornstein_uhlenbeck_process.__call__

	
ornstein_uhlenbeck_process.__call__(timeline)

	Run the simulation along the given timeline.

	Parameters

	
	timelinearray-like

	A one dimensional array of strictly increasing numbers,
defining the timeline of the simulation.

	Returns

	
	Simulation results, as specified by subclass methods.

	

sdepy.ornstein_uhlenbeck_process.addaxis

	
ornstein_uhlenbeck_process.addaxis = None

	

sdepy.ornstein_uhlenbeck_process.args

	
ornstein_uhlenbeck_process.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.ornstein_uhlenbeck_process.begin

	
ornstein_uhlenbeck_process.begin()

	See documentation of paths_generator.begin

sdepy.ornstein_uhlenbeck_process.dZ

	
ornstein_uhlenbeck_process.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.ornstein_uhlenbeck_process.depth

	
ornstein_uhlenbeck_process.depth = 2

	

sdepy.ornstein_uhlenbeck_process.end

	
ornstein_uhlenbeck_process.end()

	See documentation of paths_generator.end

sdepy.ornstein_uhlenbeck_process.euler_next

	
ornstein_uhlenbeck_process.euler_next()

	Euler-Maruyama integration step.

sdepy.ornstein_uhlenbeck_process.exit

	
ornstein_uhlenbeck_process.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.ornstein_uhlenbeck_process.info_begin

	
ornstein_uhlenbeck_process.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.ornstein_uhlenbeck_process.info_end

	
ornstein_uhlenbeck_process.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.ornstein_uhlenbeck_process.info_next

	
ornstein_uhlenbeck_process.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.ornstein_uhlenbeck_process.info_store

	
ornstein_uhlenbeck_process.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.ornstein_uhlenbeck_process.init

	
ornstein_uhlenbeck_process.init(s, out_x, x0=0.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.ornstein_uhlenbeck_process.let

	
ornstein_uhlenbeck_process.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.ornstein_uhlenbeck_process.log

	
ornstein_uhlenbeck_process.log = False

	

sdepy.ornstein_uhlenbeck_process.more

	
ornstein_uhlenbeck_process.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.ornstein_uhlenbeck_process.next

	
ornstein_uhlenbeck_process.next()

	See documentation of paths_generator.next

sdepy.ornstein_uhlenbeck_process.pace

	
ornstein_uhlenbeck_process.pace(timeline)

	Target integration steps for the current integration.

	Parameters

	
	timelinearray

	Requested simulation timeline, cast as an array of float data-type.

	Returns

	
	array

	Target time points to be touched during the simulation
(typically, more thinly spaced than the output time
points in timeline, based on the steps parameter),
to be merged with timeline.

	May be overridden by subclasses. For default behaviour,

	

	see paths_generator class documentation.

	

sdepy.ornstein_uhlenbeck_process.q

	
ornstein_uhlenbeck_process.q = None

	

sdepy.ornstein_uhlenbeck_process.result

	
ornstein_uhlenbeck_process.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.ornstein_uhlenbeck_process.sde

	
ornstein_uhlenbeck_process.sde(s, x, theta=0.0, k=1.0, sigma=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.ornstein_uhlenbeck_process.shapes

	
ornstein_uhlenbeck_process.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.ornstein_uhlenbeck_process.source_dj

	
ornstein_uhlenbeck_process.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.ornstein_uhlenbeck_process.source_dn

	
ornstein_uhlenbeck_process.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.ornstein_uhlenbeck_process.source_dt

	
ornstein_uhlenbeck_process.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.ornstein_uhlenbeck_process.source_dw

	
ornstein_uhlenbeck_process.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.ornstein_uhlenbeck_process.sources

	
ornstein_uhlenbeck_process.sources = {'dw', 'dt'}

	

sdepy.ornstein_uhlenbeck_process.store

	
ornstein_uhlenbeck_process.store(i, k)

	See documentation of paths_generator.store

sdepy.oruh_cdf.__call__

	
oruh_cdf.__call__(x, *, x0=0.0, theta=0.0, k=1.0, sigma=1.0)

	

sdepy.oruh_cdf.params

	
oruh_cdf.params

	

sdepy.oruh_mean.__call__

	
oruh_mean.__call__(*, x0=0.0, theta=0.0, k=1.0, sigma=1.0)

	

sdepy.oruh_mean.params

	
oruh_mean.params

	

sdepy.oruh_pdf.__call__

	
oruh_pdf.__call__(x, *, x0=0.0, theta=0.0, k=1.0, sigma=1.0)

	

sdepy.oruh_pdf.params

	
oruh_pdf.params

	

sdepy.oruh_std.__call__

	
oruh_std.__call__(*, x0=0.0, theta=0.0, k=1.0, sigma=1.0)

	

sdepy.oruh_std.params

	
oruh_std.params

	

sdepy.oruh_var.__call__

	
oruh_var.__call__(*, x0=0.0, theta=0.0, k=1.0, sigma=1.0)

	

sdepy.oruh_var.params

	
oruh_var.params

	

sdepy.paths_generator.depth

	
paths_generator.depth = 2

	

sdepy.poisson_source.size

	
poisson_source.size

	Returns the number of stored scalar values from previous
evaluations, or 0 for sources without memory.

sdepy.poisson_source.t

	
poisson_source.t

	Returns a copy of the time points at which source values
have been stored from previous evaluations, as an array,
or an empty array for sources without memory.

sdepy.process.T

	
process.T

	Same as self.transpose(), except that self is returned if
self.ndim < 2.

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],
 [3., 4.]])
>>> x.T
array([[1., 3.],
 [2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

sdepy.process.all

	
process.all(axis=None, out=None, keepdims=False)

	Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also

	numpy.all

	equivalent function

sdepy.process.any

	
process.any(axis=None, out=None, keepdims=False)

	Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also

	numpy.any

	equivalent function

sdepy.process.argmax

	
process.argmax(axis=None, out=None)

	Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also

	numpy.argmax

	equivalent function

sdepy.process.argmin

	
process.argmin(axis=None, out=None)

	Return indices of the minimum values along the given axis of a.

Refer to numpy.argmin for detailed documentation.

See also

	numpy.argmin

	equivalent function

sdepy.process.argpartition

	
process.argpartition(kth, axis=-1, kind='introselect', order=None)

	Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also

	numpy.argpartition

	equivalent function

sdepy.process.argsort

	
process.argsort(axis=-1, kind='quicksort', order=None)

	Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also

	numpy.argsort

	equivalent function

sdepy.process.astype

	
process.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

	Copy of the array, cast to a specified type.

	Parameters

	
	dtypestr or dtype

	Typecode or data-type to which the array is cast.

	order{‘C’, ‘F’, ‘A’, ‘K’}, optional

	Controls the memory layout order of the result.
‘C’ means C order, ‘F’ means Fortran order, ‘A’
means ‘F’ order if all the arrays are Fortran contiguous,
‘C’ order otherwise, and ‘K’ means as close to the
order the array elements appear in memory as possible.
Default is ‘K’.

	casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

	Controls what kind of data casting may occur. Defaults to ‘unsafe’
for backwards compatibility.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

	subokbool, optional

	If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

	copybool, optional

	By default, astype always returns a newly allocated array. If this
is set to false, and the dtype, order, and subok
requirements are satisfied, the input array is returned instead
of a copy.

	Returns

	
	arr_tndarray

	Unless copy is False and the other conditions for returning the input
array are satisfied (see description for copy input parameter), arr_t
is a new array of the same shape as the input array, with dtype, order
given by dtype, order.

	Raises

	
	ComplexWarning

	When casting from complex to float or int. To avoid this,
one should use a.real.astype(t).

Notes

Starting in NumPy 1.9, astype method now returns an error if the string
dtype to cast to is not long enough in ‘safe’ casting mode to hold the max
value of integer/float array that is being casted. Previously the casting
was allowed even if the result was truncated.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

sdepy.process.base

	
process.base

	Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

sdepy.process.byteswap

	
process.byteswap(inplace=False)

	Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by
returning a byteswapped array, optionally swapped in-place.

	Parameters

	
	inplacebool, optional

	If True, swap bytes in-place, default is False.

	Returns

	
	outndarray

	The byteswapped array. If inplace is True, this is
a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> map(hex, A)
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([256, 1, 13090], dtype=int16)
>>> map(hex, A)
['0x100', '0x1', '0x3322']

Arrays of strings are not swapped

>>> A = np.array(['ceg', 'fac'])
>>> A.byteswap()
array(['ceg', 'fac'],
 dtype='|S3')

sdepy.process.choose

	
process.choose(choices, out=None, mode='raise')

	Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also

	numpy.choose

	equivalent function

sdepy.process.clip

	
process.clip(min=None, max=None, out=None)

	Return an array whose values are limited to [min, max].
One of max or min must be given.

Refer to numpy.clip for full documentation.

See also

	numpy.clip

	equivalent function

sdepy.process.compress

	
process.compress(condition, axis=None, out=None)

	Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also

	numpy.compress

	equivalent function

sdepy.process.conj

	
process.conj()

	Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also

	numpy.conjugate

	equivalent function

sdepy.process.conjugate

	
process.conjugate()

	Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also

	numpy.conjugate

	equivalent function

sdepy.process.copy

	
process.copy(order='C')

	Return a copy of the array.

	Parameters

	
	order{‘C’, ‘F’, ‘A’, ‘K’}, optional

	Controls the memory layout of the copy. ‘C’ means C-order,
‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous,
‘C’ otherwise. ‘K’ means match the layout of a as closely
as possible. (Note that this function and numpy.copy() are very
similar, but have different default values for their order=
arguments.)

See also

numpy.copy, numpy.copyto

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],
 [0, 0, 0]])

>>> y
array([[1, 2, 3],
 [4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

sdepy.process.ctypes

	
process.ctypes

	An object to simplify the interaction of the array with the ctypes
module.

This attribute creates an object that makes it easier to use arrays
when calling shared libraries with the ctypes module. The returned
object has, among others, data, shape, and strides attributes (see
Notes below) which themselves return ctypes objects that can be used
as arguments to a shared library.

	Parameters

	
	None

	

	Returns

	
	cPython object

	Possessing attributes data, shape, strides, etc.

See also

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented
in “Guide to NumPy” (we have omitted undocumented public attributes,
as well as documented private attributes):

	data: A pointer to the memory area of the array as a Python integer.
This memory area may contain data that is not aligned, or not in correct
byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this
attribute to arbitrary C-code to avoid trouble that can include Python
crashing. User Beware! The value of this attribute is exactly the same
as self._array_interface_[‘data’][0].

	shape (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the C-integer corresponding to dtype(‘p’) on this
platform. This base-type could be c_int, c_long, or c_longlong
depending on the platform. The c_intp type is defined accordingly in
numpy.ctypeslib. The ctypes array contains the shape of the underlying
array.

	strides (c_intp*self.ndim): A ctypes array of length self.ndim where
the basetype is the same as for the shape attribute. This ctypes array
contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to
get to the next element in the array.

	data_as(obj): Return the data pointer cast to a particular c-types object.
For example, calling self._as_parameter_ is equivalent to
self.data_as(ctypes.c_void_p). Perhaps you want to use the data as a
pointer to a ctypes array of floating-point data:
self.data_as(ctypes.POINTER(ctypes.c_double)).

	shape_as(obj): Return the shape tuple as an array of some other c-types
type. For example: self.shape_as(ctypes.c_short).

	strides_as(obj): Return the strides tuple as an array of some other
c-types type. For example: self.strides_as(ctypes.c_longlong).

Be careful using the ctypes attribute - especially on temporary
arrays or arrays constructed on the fly. For example, calling
(a+b).ctypes.data_as(ctypes.c_void_p) returns a pointer to memory
that is invalid because the array created as (a+b) is deallocated
before the next Python statement. You can avoid this problem using
either c=a+b or ct=(a+b).ctypes. In the latter case, ct will
hold a reference to the array until ct is deleted or re-assigned.

If the ctypes module is not available, then the ctypes attribute
of array objects still returns something useful, but ctypes objects
are not returned and errors may be raised instead. In particular,
the object will still have the as parameter attribute which will
return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x
array([[0, 1],
 [2, 3]])
>>> x.ctypes.data
30439712
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long))
<ctypes.LP_c_long object at 0x01F01300>
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_long)).contents
c_long(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_longlong)).contents
c_longlong(4294967296L)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x01FFD580>
>>> x.ctypes.shape_as(ctypes.c_long)
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x01FCE620>
>>> x.ctypes.strides_as(ctypes.c_longlong)
<numpy.core._internal.c_longlong_Array_2 object at 0x01F01300>

sdepy.process.cumprod

	
process.cumprod(axis=None, dtype=None, out=None)

	Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also

	numpy.cumprod

	equivalent function

sdepy.process.cumsum

	
process.cumsum(axis=None, dtype=None, out=None)

	Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also

	numpy.cumsum

	equivalent function

sdepy.process.data

	
process.data

	Python buffer object pointing to the start of the array’s data.

sdepy.process.diagonal

	
process.diagonal(offset=0, axis1=0, axis2=1)

	Return specified diagonals. In NumPy 1.9 the returned array is a
read-only view instead of a copy as in previous NumPy versions. In
a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

See also

	numpy.diagonal

	equivalent function

sdepy.process.dot

	
process.dot(b, out=None)

	Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also

	numpy.dot

	equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],
 [2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],
 [8., 8.]])

sdepy.process.dt

	
process.dt

	Process timeline increments, as returned by numpy.diff.

Notes

The result is computed upon first call and cached, and will not
reflect subsequent modifications to the t attribute.

sdepy.process.dtx

	
process.dtx

	Process timeline increments, as returned by numpy.diff,
reshaped to be broadcastable to the process values.

Notes

The result is computed upon first call and cached, and will not
reflect subsequent modifications to the t attribute.

sdepy.process.dtype

	
process.dtype

	Data-type of the array’s elements.

	Parameters

	
	None

	

	Returns

	
	dnumpy dtype object

	

See also

numpy.dtype

Examples

>>> x
array([[0, 1],
 [2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

sdepy.process.dump

	
process.dump(file)

	Dump a pickle of the array to the specified file.
The array can be read back with pickle.load or numpy.load.

	Parameters

	
	filestr

	A string naming the dump file.

sdepy.process.dumps

	
process.dumps()

	Returns the pickle of the array as a string.
pickle.loads or numpy.loads will convert the string back to an array.

	Parameters

	
	None

	

sdepy.process.fill

	
process.fill(value)

	Fill the array with a scalar value.

	Parameters

	
	valuescalar

	All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

sdepy.process.flags

	
process.flags

	Information about the memory layout of the array.

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']),
or by using lowercased attribute names (as in a.flags.writeable). Short flag
names are only supported in dictionary access.

Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be
changed by the user, via direct assignment to the attribute or dictionary
entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

	UPDATEIFCOPY can only be set False.

	WRITEBACKIFCOPY can only be set False.

	ALIGNED can only be set True if the data is truly aligned.

	WRITEABLE can only be set True if the array owns its own memory
or the ultimate owner of the memory exposes a writeable buffer
interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously.
This is clear for 1-dimensional arrays, but can also be true for higher
dimensional arrays.

Even for contiguous arrays a stride for a given dimension
arr.strides[dim] may be arbitrary if arr.shape[dim] == 1
or the array has no elements.
It does not generally hold that self.strides[-1] == self.itemsize
for C-style contiguous arrays or self.strides[0] == self.itemsize for
Fortran-style contiguous arrays is true.

	Attributes

	
	C_CONTIGUOUS (C)

	The data is in a single, C-style contiguous segment.

	F_CONTIGUOUS (F)

	The data is in a single, Fortran-style contiguous segment.

	OWNDATA (O)

	The array owns the memory it uses or borrows it from another object.

	WRITEABLE (W)

	The data area can be written to. Setting this to False locks
the data, making it read-only. A view (slice, etc.) inherits WRITEABLE
from its base array at creation time, but a view of a writeable
array may be subsequently locked while the base array remains writeable.
(The opposite is not true, in that a view of a locked array may not
be made writeable. However, currently, locking a base object does not
lock any views that already reference it, so under that circumstance it
is possible to alter the contents of a locked array via a previously
created writeable view onto it.) Attempting to change a non-writeable
array raises a RuntimeError exception.

	ALIGNED (A)

	The data and all elements are aligned appropriately for the hardware.

	WRITEBACKIFCOPY (X)

	This array is a copy of some other array. The C-API function
PyArray_ResolveWritebackIfCopy must be called before deallocating
to the base array will be updated with the contents of this array.

	UPDATEIFCOPY (U)

	(Deprecated, use WRITEBACKIFCOPY) This array is a copy of some other array.
When this array is
deallocated, the base array will be updated with the contents of
this array.

	FNC

	F_CONTIGUOUS and not C_CONTIGUOUS.

	FORC

	F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

	BEHAVED (B)

	ALIGNED and WRITEABLE.

	CARRAY (CA)

	BEHAVED and C_CONTIGUOUS.

	FARRAY (FA)

	BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

sdepy.process.flat

	
process.flat

	A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not
a subclass of, Python’s built-in iterator object.

See also

	flatten

	Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],
 [4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],
 [2, 5],
 [3, 6]])
>>> x.T.flat[3]
5
>>> type(x.flat)
<type 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],
 [3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],
 [3, 1, 3]])

sdepy.process.flatten

	
process.flatten(order='C')

	Return a copy of the array collapsed into one dimension.

	Parameters

	
	order{‘C’, ‘F’, ‘A’, ‘K’}, optional

	‘C’ means to flatten in row-major (C-style) order.
‘F’ means to flatten in column-major (Fortran-
style) order. ‘A’ means to flatten in column-major
order if a is Fortran contiguous in memory,
row-major order otherwise. ‘K’ means to flatten
a in the order the elements occur in memory.
The default is ‘C’.

	Returns

	
	yndarray

	A copy of the input array, flattened to one dimension.

See also

	ravel

	Return a flattened array.

	flat

	A 1-D flat iterator over the array.

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

sdepy.process.getfield

	
process.getfield(dtype, offset=0)

	Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in
the view are determined by the given type and the offset into the current
array in bytes. The offset needs to be such that the view dtype fits in the
array dtype; for example an array of dtype complex128 has 16-byte elements.
If taking a view with a 32-bit integer (4 bytes), the offset needs to be
between 0 and 12 bytes.

	Parameters

	
	dtypestr or dtype

	The data type of the view. The dtype size of the view can not be larger
than that of the array itself.

	offsetint

	Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],
 [0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],
 [0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the
array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],
 [0., 4.]])

sdepy.process.imag

	
process.imag

	The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

sdepy.process.interp_kind

	
process.interp_kind = 'linear'

	

sdepy.process.item

	
process.item(*args)

	Copy an element of an array to a standard Python scalar and return it.

	Parameters

	
	*argsArguments (variable number and type)

	
	none: in this case, the method only works for arrays
with one element (a.size == 1), which element is
copied into a standard Python scalar object and returned.

	int_type: this argument is interpreted as a flat index into
the array, specifying which element to copy and return.

	tuple of int_types: functions as does a single int_type argument,
except that the argument is interpreted as an nd-index into the
array.

	Returns

	
	zStandard Python scalar object

	A copy of the specified element of the array as a suitable
Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns
a scalar array object because there is no available Python scalar that
would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar,
a standard Python scalar is returned. This can be useful for speeding up
access to elements of the array and doing arithmetic on elements of the
array using Python’s optimized math.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.item(3)
2
>>> x.item(7)
5
>>> x.item((0, 1))
1
>>> x.item((2, 2))
3

sdepy.process.itemset

	
process.itemset(*args)

	Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument
as item. Then, a.itemset(*args) is equivalent to but faster
than a[args] = item. The item should be a scalar value and args
must select a single item in the array a.

	Parameters

	
	*argsArguments

	If one argument: a scalar, only used in case a is of size 1.
If two arguments: the last argument is the value to be set
and must be a scalar, the first argument specifies a single array
element location. It is either an int or a tuple.

Notes

Compared to indexing syntax, itemset provides some speed increase
for placing a scalar into a particular location in an ndarray,
if you must do this. However, generally this is discouraged:
among other problems, it complicates the appearance of the code.
Also, when using itemset (and item) inside a loop, be sure
to assign the methods to a local variable to avoid the attribute
look-up at each loop iteration.

Examples

>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[3, 1, 7],
 [2, 8, 3],
 [8, 5, 3]])
>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[3, 1, 7],
 [2, 0, 3],
 [8, 5, 9]])

sdepy.process.itemsize

	
process.itemsize

	Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

sdepy.process.max

	
process.max(axis=None, out=None, keepdims=False)

	Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also

	numpy.amax

	equivalent function

sdepy.process.mean

	
process.mean(axis=None, dtype=None, out=None, keepdims=False)

	Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also

	numpy.mean

	equivalent function

sdepy.process.min

	
process.min(axis=None, out=None, keepdims=False)

	Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also

	numpy.amin

	equivalent function

sdepy.process.nbytes

	
process.nbytes

	Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the
array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

sdepy.process.ndim

	
process.ndim

	Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

sdepy.process.newbyteorder

	
process.newbyteorder(new_order='S')

	Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data
type.

	Parameters

	
	new_orderstring, optional

	Byte order to force; a value from the byte order specifications
below. new_order codes can be any of:

	‘S’ - swap dtype from current to opposite endian

	{‘<’, ‘L’} - little endian

	{‘>’, ‘B’} - big endian

	{‘=’, ‘N’} - native order

	{‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current
byte order. The code does a case-insensitive check on the first
letter of new_order for the alternatives above. For example,
any of ‘B’ or ‘b’ or ‘biggish’ are valid to specify big-endian.

	Returns

	
	new_arrarray

	New array object with the dtype reflecting given change to the
byte order.

sdepy.process.nonzero

	
process.nonzero()

	Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also

	numpy.nonzero

	equivalent function

sdepy.process.partition

	
process.partition(kth, axis=-1, kind='introselect', order=None)

	Rearranges the elements in the array in such a way that value of the
element in kth position is in the position it would be in a sorted array.
All elements smaller than the kth element are moved before this element and
all equal or greater are moved behind it. The ordering of the elements in
the two partitions is undefined.

New in version 1.8.0.

	Parameters

	
	kthint or sequence of ints

	Element index to partition by. The kth element value will be in its
final sorted position and all smaller elements will be moved before it
and all equal or greater elements behind it.
The order all elements in the partitions is undefined.
If provided with a sequence of kth it will partition all elements
indexed by kth of them into their sorted position at once.

	axisint, optional

	Axis along which to sort. Default is -1, which means sort along the
last axis.

	kind{‘introselect’}, optional

	Selection algorithm. Default is ‘introselect’.

	orderstr or list of str, optional

	When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can
be specified as a string, and not all fields need be specified,
but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

See also

	numpy.partition

	Return a parititioned copy of an array.

	argpartition

	Indirect partition.

	sort

	Full sort.

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
array([1, 2, 3, 4])

sdepy.process.paths

	
process.paths

	Number of paths of the process (coincides with the size
of the last dimension of the process).

sdepy.process.prod

	
process.prod(axis=None, dtype=None, out=None, keepdims=False)

	Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also

	numpy.prod

	equivalent function

sdepy.process.ptp

	
process.ptp(axis=None, out=None)

	Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also

	numpy.ptp

	equivalent function

sdepy.process.put

	
process.put(indices, values, mode='raise')

	Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also

	numpy.put

	equivalent function

sdepy.process.ravel

	
process.ravel([order])

	Return a flattened array.

Refer to numpy.ravel for full documentation.

See also

	numpy.ravel

	equivalent function

	ndarray.flat

	a flat iterator on the array.

sdepy.process.real

	
process.real

	The real part of the array.

See also

	numpy.real

	equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

sdepy.process.repeat

	
process.repeat(repeats, axis=None)

	Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also

	numpy.repeat

	equivalent function

sdepy.process.reshape

	
process.reshape(shape, order='C')

	Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also

	numpy.reshape

	equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows
the elements of the shape parameter to be passed in as separate arguments.
For example, a.reshape(10, 11) is equivalent to
a.reshape((10, 11)).

sdepy.process.resize

	
process.resize(new_shape, refcheck=True)

	Change shape and size of array in-place.

	Parameters

	
	new_shapetuple of ints, or n ints

	Shape of resized array.

	refcheckbool, optional

	If False, reference count will not be checked. Default is True.

	Returns

	
	None

	

	Raises

	
	ValueError

	If a does not own its own data or references or views to it exist,
and the data memory must be changed.
PyPy only: will always raise if the data memory must be changed, since
there is no reliable way to determine if references or views to it
exist.

	SystemError

	If the order keyword argument is specified. This behaviour is a
bug in NumPy.

See also

	resize

	Return a new array with the specified shape.

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be
resized.

The purpose of the reference count check is to make sure you
do not use this array as a buffer for another Python object and then
reallocate the memory. However, reference counts can increase in
other ways so if you are sure that you have not shared the memory
for this array with another Python object, then you may safely set
refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are
stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],
 [1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],
 [2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],
 [3, 0, 0]])

Referencing an array prevents resizing…

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that has been referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

sdepy.process.round

	
process.round(decimals=0, out=None)

	Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

See also

	numpy.around

	equivalent function

sdepy.process.searchsorted

	
process.searchsorted(v, side='left', sorter=None)

	Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also

	numpy.searchsorted

	equivalent function

sdepy.process.setfield

	
process.setfield(val, dtype, offset=0)

	Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset
bytes into the field.

	Parameters

	
	valobject

	Value to be placed in field.

	dtypedtype object

	Data-type of the field in which to place val.

	offsetint, optional

	The number of bytes into the field at which to place val.

	Returns

	
	None

	

See also

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])
>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],
 [3, 3, 3],
 [3, 3, 3]])
>>> x
array([[1.00000000e+000, 1.48219694e-323, 1.48219694e-323],
 [1.48219694e-323, 1.00000000e+000, 1.48219694e-323],
 [1.48219694e-323, 1.48219694e-323, 1.00000000e+000]])
>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

sdepy.process.setflags

	
process.setflags(write=None, align=None, uic=None)

	Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY),
respectively.

These Boolean-valued flags affect how numpy interprets the memory
area used by a (see Notes below). The ALIGNED flag can only
be set to True if the data is actually aligned according to the type.
The WRITEBACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set
to True. The flag WRITEABLE can only be set to True if the array owns its
own memory, or the ultimate owner of the memory exposes a writeable buffer
interface, or is a string. (The exception for string is made so that
unpickling can be done without copying memory.)

	Parameters

	
	writebool, optional

	Describes whether or not a can be written to.

	alignbool, optional

	Describes whether or not a is aligned properly for its type.

	uicbool, optional

	Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used
for the array is to be interpreted. There are 7 Boolean flags
in use, only four of which can be changed by the user:
WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware
(as determined by the compiler);

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced
by .base). When the C-API function PyArray_ResolveWritebackIfCopy is
called, the base array will be updated with the contents of this array.

All flags can be accessed using the single (upper case) letter as well
as the full name.

Examples

>>> y
array([[3, 1, 7],
 [2, 0, 0],
 [8, 5, 9]])
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : True
 ALIGNED : True
 WRITEBACKIFCOPY : False
 UPDATEIFCOPY : False
>>> y.setflags(write=0, align=0)
>>> y.flags
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False
 OWNDATA : True
 WRITEABLE : False
 ALIGNED : False
 WRITEBACKIFCOPY : False
 UPDATEIFCOPY : False
>>> y.setflags(uic=1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: cannot set WRITEBACKIFCOPY flag to True

sdepy.process.shape

	
process.shape

	Tuple of array dimensions.

The shape property is usually used to get the current shape of an array,
but may also be used to reshape the array in-place by assigning a tuple of
array dimensions to it. As with numpy.reshape, one of the new shape
dimensions can be -1, in which case its value is inferred from the size of
the array and the remaining dimensions. Reshaping an array in-place will
fail if a copy is required.

See also

	numpy.reshape

	similar function

	ndarray.reshape

	similar method

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0., 0., 0., 0.]])
>>> y.shape = (3, 6)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: total size of new array must be unchanged
>>> np.zeros((4,2))[::2].shape = (-1,)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: incompatible shape for a non-contiguous array

sdepy.process.size

	
process.size

	Number of elements in the array.

Equivalent to np.prod(a.shape), i.e., the product of the array’s
dimensions.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

sdepy.process.sort

	
process.sort(axis=-1, kind='quicksort', order=None)

	Sort an array, in-place.

	Parameters

	
	axisint, optional

	Axis along which to sort. Default is -1, which means sort along the
last axis.

	kind{‘quicksort’, ‘mergesort’, ‘heapsort’}, optional

	Sorting algorithm. Default is ‘quicksort’.

	orderstr or list of str, optional

	When a is an array with fields defined, this argument specifies
which fields to compare first, second, etc. A single field can
be specified as a string, and not all fields need be specified,
but unspecified fields will still be used, in the order in which
they come up in the dtype, to break ties.

See also

	numpy.sort

	Return a sorted copy of an array.

	argsort

	Indirect sort.

	lexsort

	Indirect stable sort on multiple keys.

	searchsorted

	Find elements in sorted array.

	partition

	Partial sort.

Notes

See sort for notes on the different sorting algorithms.

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],
 [1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],
 [1, 4]])

Use the order keyword to specify a field to use when sorting a
structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([('c', 1), ('a', 2)],
 dtype=[('x', '|S1'), ('y', '<i4')])

sdepy.process.squeeze

	
process.squeeze(axis=None)

	Remove single-dimensional entries from the shape of a.

Refer to numpy.squeeze for full documentation.

See also

	numpy.squeeze

	equivalent function

sdepy.process.std

	
process.std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)

	Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also

	numpy.std

	equivalent function

sdepy.process.strides

	
process.strides

	Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a
is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the
“ndarray.rst” file in the NumPy reference guide.

See also

numpy.lib.stride_tricks.as_strided

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other
(known as a contiguous block of memory). The strides of an array tell
us how many bytes we have to skip in memory to move to the next position
along a certain axis. For example, we have to skip 4 bytes (1 value) to
move to the next column, but 20 bytes (5 values) to get to the same
position in the next row. As such, the strides for the array x will be
(20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]],
 [[12, 13, 14, 15],
 [16, 17, 18, 19],
 [20, 21, 22, 23]]])
>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

sdepy.process.sum

	
process.sum(axis=None, dtype=None, out=None, keepdims=False)

	Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also

	numpy.sum

	equivalent function

sdepy.process.swapaxes

	
process.swapaxes(axis1, axis2)

	Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also

	numpy.swapaxes

	equivalent function

sdepy.process.take

	
process.take(indices, axis=None, out=None, mode='raise')

	Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also

	numpy.take

	equivalent function

sdepy.process.tcumsum

	
process.tcumsum(dtype=None, out=None)

	Process exposing for each path and time point
the cumulative sum of process values along time.

sdepy.process.tobytes

	
process.tobytes(order='C')

	Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

New in version 1.9.0.

	Parameters

	
	order{‘C’, ‘F’, None}, optional

	Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

	Returns

	
	sbytes

	Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

sdepy.process.tofile

	
process.tofile(fid, sep="", format="%s")

	Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a.
The data produced by this method can be recovered using the function
fromfile().

	Parameters

	
	fidfile or str

	An open file object, or a string containing a filename.

	sepstr

	Separator between array items for text output.
If “” (empty), a binary file is written, equivalent to
file.write(a.tobytes()).

	formatstr

	Format string for text file output.
Each entry in the array is formatted to text by first converting
it to the closest Python type, and then using “format” % item.

Notes

This is a convenience function for quick storage of array data.
Information on endianness and precision is lost, so this method is not a
good choice for files intended to archive data or transport data between
machines with different endianness. Some of these problems can be overcome
by outputting the data as text files, at the expense of speed and file
size.

sdepy.process.tolist

	
process.tolist()

	Return the array as a (possibly nested) list.

Return a copy of the array data as a (nested) Python list.
Data items are converted to the nearest compatible Python type.

	Parameters

	
	none

	

	Returns

	
	ylist

	The possibly nested list of array elements.

Notes

The array may be recreated, a = np.array(a.tolist()).

Examples

>>> a = np.array([1, 2])
>>> a.tolist()
[1, 2]
>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]
>>> a.tolist()
[[1, 2], [3, 4]]

sdepy.process.tostring

	
process.tostring(order='C')

	Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of
data memory. The bytes object can be produced in either ‘C’ or ‘Fortran’,
or ‘Any’ order (the default is ‘C’-order). ‘Any’ order means C-order
unless the F_CONTIGUOUS flag in the array is set, in which case it
means ‘Fortran’ order.

This function is a compatibility alias for tobytes. Despite its name it returns bytes not strings.

	Parameters

	
	order{‘C’, ‘F’, None}, optional

	Order of the data for multidimensional arrays:
C, Fortran, or the same as for the original array.

	Returns

	
	sbytes

	Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]])
>>> x.tobytes()
b'\x00\x00\x00\x00\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00'

sdepy.process.trace

	
process.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

	Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also

	numpy.trace

	equivalent function

sdepy.process.transpose

	
process.transpose(*axes)

	Returns a view of the array with axes transposed.

For a 1-D array, this has no effect. (To change between column and
row vectors, first cast the 1-D array into a matrix object.)
For a 2-D array, this is the usual matrix transpose.
For an n-D array, if axes are given, their order indicates how the
axes are permuted (see Examples). If axes are not provided and
a.shape = (i[0], i[1], ... i[n-2], i[n-1]), then
a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).

	Parameters

	
	axesNone, tuple of ints, or n ints

	
	None or no argument: reverses the order of the axes.

	tuple of ints: i in the j-th place in the tuple means a’s
i-th axis becomes a.transpose()’s j-th axis.

	n ints: same as an n-tuple of the same ints (this form is
intended simply as a “convenience” alternative to the tuple form)

	Returns

	
	outndarray

	View of a, with axes suitably permuted.

See also

	ndarray.T

	Array property returning the array transposed.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],
 [3, 4]])
>>> a.transpose()
array([[1, 3],
 [2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],
 [2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],
 [2, 4]])

sdepy.process.tx

	
process.tx

	Timeline of the process, reshaped to be broadcastable to
the process values and paths across time.

sdepy.process.var

	
process.var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)

	Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also

	numpy.var

	equivalent function

sdepy.process.view

	
process.view(dtype=None, type=None)

	New view of array with the same data.

	Parameters

	
	dtypedata-type or ndarray sub-class, optional

	Data-type descriptor of the returned view, e.g., float32 or int16. The
default, None, results in the view having the same data-type as a.
This argument can also be specified as an ndarray sub-class, which
then specifies the type of the returned object (this is equivalent to
setting the type parameter).

	typePython type, optional

	Type of the returned view, e.g., ndarray or matrix. Again, the
default None results in type preservation.

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view
of the array’s memory with a different data-type. This can cause a
reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just
returns an instance of ndarray_subclass that looks at the same array
(same shape, dtype, etc.) This does not cause a reinterpretation of the
memory.

For a.view(some_dtype), if some_dtype has a different number of
bytes per entry than the previous dtype (for example, converting a
regular array to a structured array), then the behavior of the view
cannot be predicted just from the superficial appearance of a (shown
by print(a)). It also depends on exactly how a is stored in
memory. Therefore if a is C-ordered versus fortran-ordered, versus
defined as a slice or transpose, etc., the view may give different
results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrixlib.defmatrix.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
 [3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> print(x)
[(1, 20) (3, 4)]

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)

Views share data:

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be
avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],
 [4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: new type not compatible with array.
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],
 [(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

sdepy.process.vshape

	
process.vshape

	Shape of the values of the process.

sdepy.process.x

	
process.x

	Process values, viewed as a numpy.ndarray.

sdepy.source.size

	
source.size

	Returns the number of stored scalar values from previous
evaluations, or 0 for sources without memory.

sdepy.source.t

	
source.t

	Returns a copy of the time points at which source values
have been stored from previous evaluations, as an array,
or an empty array for sources without memory.

sdepy.true_cpoisson_source.__call__

	
true_cpoisson_source.__call__(t, dt=None)

	See true_source class documentation.

sdepy.true_cpoisson_source.getsize

	
true_cpoisson_source.getsize(z)

	

sdepy.true_cpoisson_source.getvalue

	
true_cpoisson_source.getvalue(z)

	

sdepy.true_cpoisson_source.init

	
true_cpoisson_source.init()

	

sdepy.true_cpoisson_source.new_inside

	
true_cpoisson_source.new_inside(z1, z2, t1, t2, s)

	Generate a new process increment, at a time s between
those of formerly realized values.

	Parameters

	
	z1, z2array

	Formerly realized values of the source at times t1, t2
respectively.

	t1, t2float

	t1, t2 are the times of former realizations closest to
s, with t1 < s < t2.

	Returns

	
	array

	Value of the source at s, conditional on formerly
realized value z1 at t1 and z2 at t2.
Should be defined by subclasses. Defaults to an array
of numpy.nan.

sdepy.true_cpoisson_source.new_outside

	
true_cpoisson_source.new_outside(z, t, s)

	Generate a new process increment, at a time s above or below
those of formerly realized values.

	Parameters

	
	zarray

	Formerly realized value of the source at time t.

	t, sfloat

	t is the highest (lowest) time of former realizations,
and s is above (below) t.

	Returns

	
	array

	Value of the source at s, conditional on formerly
realized value z at t. Should be defined by subclasses.
Defaults to an array of numpy.nan.

sdepy.true_cpoisson_source.size

	
true_cpoisson_source.size

	Returns the number of stored scalar values from previous
evaluations, or 0 for sources without memory.

sdepy.true_cpoisson_source.t

	
true_cpoisson_source.t

	Returns a copy of the time points at which source values
have been stored from previous evaluations, as an array,
or an empty array for sources without memory.

sdepy.true_poisson_source.__call__

	
true_poisson_source.__call__(t, dt=None)

	See true_source class documentation.

sdepy.true_poisson_source.getsize

	
true_poisson_source.getsize(z)

	

sdepy.true_poisson_source.getvalue

	
true_poisson_source.getvalue(z)

	

sdepy.true_poisson_source.init

	
true_poisson_source.init()

	

sdepy.true_poisson_source.new_inside

	
true_poisson_source.new_inside(n1, n2, t1, t2, s)

	Generate a new process increment, at a time s between
those of formerly realized values.

	Parameters

	
	z1, z2array

	Formerly realized values of the source at times t1, t2
respectively.

	t1, t2float

	t1, t2 are the times of former realizations closest to
s, with t1 < s < t2.

	Returns

	
	array

	Value of the source at s, conditional on formerly
realized value z1 at t1 and z2 at t2.
Should be defined by subclasses. Defaults to an array
of numpy.nan.

sdepy.true_poisson_source.new_outside

	
true_poisson_source.new_outside(n, t, s)

	Generate a new process increment, at a time s above or below
those of formerly realized values.

	Parameters

	
	zarray

	Formerly realized value of the source at time t.

	t, sfloat

	t is the highest (lowest) time of former realizations,
and s is above (below) t.

	Returns

	
	array

	Value of the source at s, conditional on formerly
realized value z at t. Should be defined by subclasses.
Defaults to an array of numpy.nan.

sdepy.true_poisson_source.size

	
true_poisson_source.size

	Returns the number of stored scalar values from previous
evaluations, or 0 for sources without memory.

sdepy.true_poisson_source.t

	
true_poisson_source.t

	Returns a copy of the time points at which source values
have been stored from previous evaluations, as an array,
or an empty array for sources without memory.

sdepy.true_source.__call__

	
true_source.__call__(t, dt=None)

	See true_source class documentation.

sdepy.true_source.getsize

	
true_source.getsize(z)

	

sdepy.true_source.getvalue

	
true_source.getvalue(z)

	

sdepy.true_source.init

	
true_source.init()

	

sdepy.true_source.size

	
true_source.size

	Returns the number of stored scalar values from previous
evaluations, or 0 for sources without memory.

sdepy.true_source.t

	
true_source.t

	Returns a copy of the time points at which source values
have been stored from previous evaluations, as an array,
or an empty array for sources without memory.

sdepy.true_wiener_source.__call__

	
true_wiener_source.__call__(t, dt=None)

	See true_source class documentation.

sdepy.true_wiener_source.getsize

	
true_wiener_source.getsize(z)

	

sdepy.true_wiener_source.getvalue

	
true_wiener_source.getvalue(z)

	

sdepy.true_wiener_source.init

	
true_wiener_source.init()

	

sdepy.true_wiener_source.new_inside

	
true_wiener_source.new_inside(w1, w2, t1, t2, s)

	Generate a new process increment, at a time s between
those of formerly realized values.

	Parameters

	
	z1, z2array

	Formerly realized values of the source at times t1, t2
respectively.

	t1, t2float

	t1, t2 are the times of former realizations closest to
s, with t1 < s < t2.

	Returns

	
	array

	Value of the source at s, conditional on formerly
realized value z1 at t1 and z2 at t2.
Should be defined by subclasses. Defaults to an array
of numpy.nan.

sdepy.true_wiener_source.new_outside

	
true_wiener_source.new_outside(w, t, s)

	Generate a new process increment, at a time s above or below
those of formerly realized values.

	Parameters

	
	zarray

	Formerly realized value of the source at time t.

	t, sfloat

	t is the highest (lowest) time of former realizations,
and s is above (below) t.

	Returns

	
	array

	Value of the source at s, conditional on formerly
realized value z at t. Should be defined by subclasses.
Defaults to an array of numpy.nan.

sdepy.true_wiener_source.size

	
true_wiener_source.size

	Returns the number of stored scalar values from previous
evaluations, or 0 for sources without memory.

sdepy.true_wiener_source.t

	
true_wiener_source.t

	Returns a copy of the time points at which source values
have been stored from previous evaluations, as an array,
or an empty array for sources without memory.

sdepy.wiener_SDE.A

	
wiener_SDE.A(t, x)

	See documentation integrator.A

sdepy.wiener_SDE.addaxis

	
wiener_SDE.addaxis = None

	

sdepy.wiener_SDE.args

	
wiener_SDE.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.wiener_SDE.begin

	
wiener_SDE.begin()

	See documentation of paths_generator.begin

sdepy.wiener_SDE.dZ

	
wiener_SDE.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.wiener_SDE.end

	
wiener_SDE.end()

	See documentation of paths_generator.end

sdepy.wiener_SDE.exit

	
wiener_SDE.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.wiener_SDE.info_begin

	
wiener_SDE.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.wiener_SDE.info_end

	
wiener_SDE.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.wiener_SDE.info_next

	
wiener_SDE.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.wiener_SDE.info_store

	
wiener_SDE.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.wiener_SDE.init

	
wiener_SDE.init(s, out_x, x0=0.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.wiener_SDE.let

	
wiener_SDE.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.wiener_SDE.log

	
wiener_SDE.log = False

	

sdepy.wiener_SDE.more

	
wiener_SDE.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.wiener_SDE.next

	
wiener_SDE.next()

	See documentation of paths_generator.next

sdepy.wiener_SDE.q

	
wiener_SDE.q = None

	

sdepy.wiener_SDE.result

	
wiener_SDE.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.wiener_SDE.sde

	
wiener_SDE.sde(t, x, mu=0.0, sigma=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.wiener_SDE.shapes

	
wiener_SDE.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.wiener_SDE.source_dj

	
wiener_SDE.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.wiener_SDE.source_dn

	
wiener_SDE.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.wiener_SDE.source_dt

	
wiener_SDE.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.wiener_SDE.source_dw

	
wiener_SDE.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.wiener_SDE.sources

	
wiener_SDE.sources = {'dw', 'dt'}

	

sdepy.wiener_SDE.store

	
wiener_SDE.store(i, k)

	See documentation of paths_generator.store

sdepy.wiener_cdf.__call__

	
wiener_cdf.__call__(x, *, x0=0.0, mu=0.0, sigma=1.0)

	

sdepy.wiener_cdf.params

	
wiener_cdf.params

	

sdepy.wiener_chf.__call__

	
wiener_chf.__call__(u, *, x0=0.0, mu=0.0, sigma=1.0)

	

sdepy.wiener_chf.params

	
wiener_chf.params

	

sdepy.wiener_mean.__call__

	
wiener_mean.__call__(*, x0=0.0, mu=0.0, sigma=1.0)

	

sdepy.wiener_mean.params

	
wiener_mean.params

	

sdepy.wiener_pdf.__call__

	
wiener_pdf.__call__(x, *, x0=0.0, mu=0.0, sigma=1.0)

	

sdepy.wiener_pdf.params

	
wiener_pdf.params

	

sdepy.wiener_process.A

	
wiener_process.A(t, x)

	See documentation integrator.A

sdepy.wiener_process.__call__

	
wiener_process.__call__(timeline)

	Run the simulation along the given timeline.

	Parameters

	
	timelinearray-like

	A one dimensional array of strictly increasing numbers,
defining the timeline of the simulation.

	Returns

	
	Simulation results, as specified by subclass methods.

	

sdepy.wiener_process.addaxis

	
wiener_process.addaxis = None

	

sdepy.wiener_process.args

	
wiener_process.args

	Stores parameters passed as **args upon initialization
of the SDE. Should be used by subclass methods to access
and modify their values.

sdepy.wiener_process.begin

	
wiener_process.begin()

	See documentation of paths_generator.begin

sdepy.wiener_process.dZ

	
wiener_process.dZ(t, dt)

	See documentation of integrator.dZ

sdepy.wiener_process.depth

	
wiener_process.depth = 2

	

sdepy.wiener_process.end

	
wiener_process.end()

	See documentation of paths_generator.end

sdepy.wiener_process.euler_next

	
wiener_process.euler_next()

	Euler-Maruyama integration step.

sdepy.wiener_process.exit

	
wiener_process.exit(tt, xx)

	See documentation paths_generator.exit

sdepy.wiener_process.info_begin

	
wiener_process.info_begin()

	Optional diagnostic information logging function,
called before the integration begins.

sdepy.wiener_process.info_end

	
wiener_process.info_end()

	Optional diagnostic information logging function,
called after the integration has been completed.

sdepy.wiener_process.info_next

	
wiener_process.info_next()

	Optional diagnostic information logging function,
called after each integration step.

sdepy.wiener_process.info_store

	
wiener_process.info_store()

	Optional diagnostic information logging function,
called after each invocation of the let method.

sdepy.wiener_process.init

	
wiener_process.init(s, out_x, x0=0.0)

	Set initial conditions for SDE integration.

	Parameters

	
	tfloat

	Time point at which initial conditions should be
imposed.

	out_xarray

	Array, shaped wshape + (paths,), where initial
conditions are to be stored.

	init_argszero or more arrays, as keyword arguments

	Initialization parameters, as implied by the init method
signature. Passed upon instantiation of the SDE class
as array-like, these parameters are served to the init method
converted to arrays via np.asarray.

Notes

The default implementation has a single x0 parameter,
and sets out_x[...] = x0.

sdepy.wiener_process.let

	
wiener_process.let(t, out_x, x)

	Store the value of the integrated process at
time point t belonging to the requested output timeline.

	Parameters

	
	tfloat

	Time point to which the integration result x refers.

	out_xarray

	Array, shaped xshape + (paths,), where the result
x is to be stored.

	xarray

	Integration result at time t, shaped
wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed
in order to store in out_x a value broadcastable to its shape
(e.g. it might store in out_x only some of the components of
x).

x should be treated as read-only.

sdepy.wiener_process.log

	
wiener_process.log = False

	

sdepy.wiener_process.more

	
wiener_process.more()

	Further optional non array parameters,
and initializations.

	Parameters

	
	more_argszero or more keyword arguments

	Further, possibly non array-like, SDE parameters, as implied
by the more method signature. Passed upon instantiation
of the SDE class, are served to the more method
and made available to other methods as items in the args
attribute.

Notes

The factors parameter of hull_white_SDE illustrates
a use case for the more method.

sdepy.wiener_process.next

	
wiener_process.next()

	See documentation of paths_generator.next

sdepy.wiener_process.pace

	
wiener_process.pace(timeline)

	Target integration steps for the current integration.

	Parameters

	
	timelinearray

	Requested simulation timeline, cast as an array of float data-type.

	Returns

	
	array

	Target time points to be touched during the simulation
(typically, more thinly spaced than the output time
points in timeline, based on the steps parameter),
to be merged with timeline.

	May be overridden by subclasses. For default behaviour,

	

	see paths_generator class documentation.

	

sdepy.wiener_process.q

	
wiener_process.q = None

	

sdepy.wiener_process.result

	
wiener_process.result(tt, xx)

	Compute the integration output.

	Parameters

	
	ttarray

	Output integration timeline.

	xxarray

	Integration result, shaped tt.shape + xshape + (paths,).

	Returns

	
	result

	Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx).
In case vshape != xshape, this method should operate as needed
in order to return a process with values shaped as vshape
(e.g. it might return a function of the components of xx).

sdepy.wiener_process.sde

	
wiener_process.sde(t, x, mu=0.0, sigma=1.0)

	Stochastic Differential Equation (SDE) to be integrated.

	Parameters

	
	tfloat

	Time point at which the SDE should be evaluated.

	xarray

	Values that the stochastic process takes at time t.

	sde_argszero or more arrays, as keyword arguments

	SDE parameters, as implied by the
sde method signature. Passed upon
instantiation of the SDE class as possibly time-dependent
array-like, these parameters are served to the sde method
once evaluated at t and converted to arrays via np.asarray.

	Returns

	
	sde_termsdict of arrays

	Contains, for each differential stated in the source
attribute, the value of the corresponding coefficient
in the represented SDE.

Notes

x should be treated as read-only.

sdepy.wiener_process.shapes

	
wiener_process.shapes(vshape)

	Shape of the values to be computed and stored
upon integration of the SDE.

	Parameters

	
	vshapeint or tuple of int

	Shape of the values of the integration result,
as requested upon instantiation of SDE.

	Returns

	
	vshapeint or tuple of int

	Confirms or overrides the given vshape.

	xshapeint or tuple of int

	Shape of the values stored during integration
at the output time points. out_x array
passed to the let method has shape
xshape + (paths,). Defaults to vshape.

	wshapeint or tuple of int

	Shape of the working space used during integration.
x values passed to the sde and let methods
have shape wshape + (paths,). Defaults to vshape.

Notes

xshape and wshape are passed to the
parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate
use cases for different values of vshape, xshape
and/or wshape.

sdepy.wiener_process.source_dj

	
wiener_process.source_dj(dj=None, dn=None, ptype=<class 'int'>, lam=1.0, y=None)

	Set up a source of compound Poisson process increments
(jumps), to be used as ‘dj’ during integration.

	Parameters

	
	djsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype, lam and y are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of cpoisson_source is returned, with
the given parameters.

	ptype, lam, ysee cpoisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

cpoisson_source

sdepy.wiener_process.source_dn

	
wiener_process.source_dn(dn=None, ptype=<class 'int'>, lam=1.0)

	Setup a source of Poisson process increments,
to be used as ‘dn’ during integration.

	Parameters

	
	dnsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (ptype and lam are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of poisson_source is returned, with
the given parameters.

	ptype, lamsee poisson_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

poisson_source

sdepy.wiener_process.source_dt

	
wiener_process.source_dt()

	Setup a source of deterministic increments, to be used
as ‘dt’ during integration.

	Returns

	
	An object ``z`` complying with the ``source`` protocol,

	

	such that ``z(t, dt) == dt``.

	

sdepy.wiener_process.source_dw

	
wiener_process.source_dw(dw=None, corr=None, rho=None)

	Setup a source of standard Wiener process (Brownian motion)
increments, to be used as ‘dw’ during integration.

	Parameters

	
	dwsource, or source subclass, or None

	If an object complying with the source protocol,
it is returned (corr and rho are ignored).
If a source subclass, it is instantiated with the
given parameters, and returned. If None, a
new instance of wiener_source is returned, with
the given parameters.

	corr, rhosee wiener_source documentation

	

	Returns

	
	An object complying with the ``source`` protocol,

	

	instantiating the requested stochasticity source.

	

	The shape of source values is set to ``wshape``.

	

See also

wiener_source

sdepy.wiener_process.sources

	
wiener_process.sources = {'dw', 'dt'}

	

sdepy.wiener_process.store

	
wiener_process.store(i, k)

	See documentation of paths_generator.store

sdepy.wiener_source.size

	
wiener_source.size

	Returns the number of stored scalar values from previous
evaluations, or 0 for sources without memory.

sdepy.wiener_source.t

	
wiener_source.t

	Returns a copy of the time points at which source values
have been stored from previous evaluations, as an array,
or an empty array for sources without memory.

sdepy.wiener_std.__call__

	
wiener_std.__call__(*, x0=0.0, mu=0.0, sigma=1.0)

	

sdepy.wiener_std.params

	
wiener_std.params

	

sdepy.wiener_var.__call__

	
wiener_var.__call__(*, x0=0.0, mu=0.0, sigma=1.0)

	

sdepy.wiener_var.params

	
wiener_var.params

	

 nav.xhtml

 Table of Contents

 		
 The SdePy Package

 		
 Getting Started

 		
 SdePy

 		
 Start here

 		
 License

 		
 Quick Guide

 		
 Install and import

 		
 How to state an SDE

 		
 How to integrate an SDE

 		
 How to handle the integration output

 		
 Example - Stochastic Runge-Kutta

 		
 Example - Fokker-Planck Equation

 		
 Example - Basket Lookback Option

 		
 API Documentation

 		
 Overview

 		
 Infrastructure

 		
 sdepy.process

 		
 sdepy.montecarlo

 		
 Stochasticity Sources

 		
 sdepy.source

 		
 sdepy.wiener_source

 		
 sdepy.poisson_source

 		
 sdepy.cpoisson_source

 		
 sdepy.odd_wiener_source

 		
 sdepy.even_poisson_source

 		
 sdepy.even_cpoisson_source

 		
 sdepy.true_source

 		
 sdepy.true_wiener_source

 		
 sdepy.true_poisson_source

 		
 sdepy.true_cpoisson_source

 		
 sdepy.norm_rv

 		
 sdepy.uniform_rv

 		
 sdepy.exp_rv

 		
 sdepy.double_exp_rv

 		
 sdepy.rvmap

 		
 SDE Integration Framework

 		
 sdepy.paths_generator

 		
 sdepy.integrator

 		
 sdepy.SDE

 		
 sdepy.SDEs

 		
 sdepy.integrate

 		
 Stochastic Processes

 		
 sdepy.wiener_process

 		
 sdepy.lognorm_process

 		
 sdepy.ornstein_uhlenbeck_process

 		
 sdepy.hull_white_process

 		
 sdepy.hull_white_1factor_process

 		
 sdepy.cox_ingersoll_ross_process

 		
 sdepy.full_heston_process

 		
 sdepy.heston_process

 		
 sdepy.jumpdiff_process

 		
 sdepy.merton_jumpdiff_process

 		
 sdepy.kou_jumpdiff_process

 		
 sdepy.wiener_SDE

 		
 sdepy.lognorm_SDE

 		
 sdepy.ornstein_uhlenbeck_SDE

 		
 sdepy.hull_white_SDE

 		
 sdepy.cox_ingersoll_ross_SDE

 		
 sdepy.full_heston_SDE

 		
 sdepy.heston_SDE

 		
 sdepy.jumpdiff_SDE

 		
 sdepy.merton_jumpdiff_SDE

 		
 sdepy.kou_jumpdiff_SDE

 		
 Analytical Results

 		
 sdepy.wiener_mean

 		
 sdepy.wiener_var

 		
 sdepy.wiener_std

 		
 sdepy.wiener_pdf

 		
 sdepy.wiener_cdf

 		
 sdepy.wiener_chf

 		
 sdepy.lognorm_mean

 		
 sdepy.lognorm_var

 		
 sdepy.lognorm_std

 		
 sdepy.lognorm_pdf

 		
 sdepy.lognorm_cdf

 		
 sdepy.lognorm_log_chf

 		
 sdepy.oruh_mean

 		
 sdepy.oruh_var

 		
 sdepy.oruh_std

 		
 sdepy.oruh_pdf

 		
 sdepy.oruh_cdf

 		
 sdepy.hw2f_mean

 		
 sdepy.hw2f_var

 		
 sdepy.hw2f_std

 		
 sdepy.hw2f_pdf

 		
 sdepy.hw2f_cdf

 		
 sdepy.cir_mean

 		
 sdepy.cir_var

 		
 sdepy.cir_std

 		
 sdepy.cir_pdf

 		
 sdepy.heston_log_mean

 		
 sdepy.heston_log_var

 		
 sdepy.heston_log_std

 		
 sdepy.heston_log_pdf

 		
 sdepy.heston_log_chf

 		
 sdepy.mjd_log_pdf

 		
 sdepy.mjd_log_chf

 		
 sdepy.kou_mean

 		
 sdepy.kou_log_pdf

 		
 sdepy.kou_log_chf

 		
 sdepy.bsd1d2

 		
 sdepy.bscall

 		
 sdepy.bscall_delta

 		
 sdepy.bsput

 		
 sdepy.bsput_delta

 		
 Shortcuts

 		
 sdepy.kfunc

 		
 sdepy.iskfunc

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

