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CHAPTER 1

SdePy

The SdePy package provides tools to state and numerically integrate Ito Stochastic Differential Equations (SDEs),
including equations with time-dependent parameters, time-dependent correlations, and stochastic jumps, and to
compute with, and extract statistics from, their realized paths.

Several preset processes are provided, including lognormal, Ornstein-Uhlenbeck, Hull-White n-factor, Heston,
and jump-diffusion processes.

Computations are fully vectorized across paths, via NumPy and SciPy, making live sessions with 100000 paths
reasonably fluent on single cpu hardware.

This package came out of practical need, so expect a flexible tool that gets real-life things done. On the other
hand, not every part of it is clean and polished, so expect rough edges, and the occasional bug (please report!).

Developers are committed to the stability of the public API, here again out of practical need to safeguard depen-
dencies.

1.1 Start here

• Installation: pip install sdepy

• Quick Guide (as code)

• Documentation (as pdf)

• Source

• License

• Bug Reports

1.2 License

Copyright (c) 2018-2019, Maurizio Cipollina.

All rights reserved.
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Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the follow-
ing disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

This package reuses the compatibly licensed files listed below.

File: sdepy/doc/_templates/autosummary/class.rst License: 3-clause BSD

For details, see sdepy/doc/_templates/autosummary/LICENSE.txt
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CHAPTER 2

Quick Guide

2.1 Install and import

Install using pip install sdepy, or copy the package source code in a directory in your Python path.

Import as

>>> import sdepy
>>> from sdepy import * # safe and handy for interactive sessions
>>> import numpy as np
>>> import scipy
>>> import matplotlib.pyplot as plt # optional, if plots are needed

2.2 How to state an SDE

Here follows a bare-bone definition of a Stochastic Differential Equation (SDE), in this case a Ornstein-Uhlenbeck
process:

>>> @integrate
... def my_process(t, x, theta=1., k=1., sigma=1.):
... return {'dt': k*(theta - x), 'dw': sigma}

This represents the SDE dX = k*(theta - X)*dt + sigma*dW(t), where theta, k and sigma are
parameters and dW(t) are Wiener process increments. A further 'dn' or 'dj' entry in the returned dictionary
would allow for Poisson or compound Poisson jumps.

A number of preset processes are provided, including lognormal processes, Hull-White n-factor processes, Heston
processes, and jump-diffusion processes.

2.3 How to integrate an SDE

Now my_process is a class, a subclass of the cooperating SDE and integrator classes:

>>> issubclass(my_process, integrator), issubclass(my_process, SDE)
(True, True)

5
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It is to be instantiated with a number of parameters, including the SDE parameters theta, k and sigma; its in-
stances are callable, given a timeline they will integrate and return the process along it. Decorating my_process
with kunfc allows for more concise handling of parameters:

>>> myp = kfunc(my_process)
>>> iskfunc(myp)
True

It is best explained by examples:

1. Scalar process in 100000 paths, with default parameters, computed at 5 time points, using 100 steps in
between:

>>> coarse_timeline = (0., 0.25, 0.5, 0.75, 1.0)
>>> np.random.seed(1) # make doctests predictable
>>> x = my_process(x0=1, paths=100*1000,
... steps=100)(coarse_timeline)
>>> x.shape
(5, 100000)

2. Vector process with three components and correlated Wiener increments (same parameters, paths, time-
line and steps as above):

>>> corr = ((1, .2, -.3), (.2, 1, .1), (-.3, .1, 1))
>>> x = my_process(x0=1, vshape=3, corr=corr,
... paths=100*1000, steps=100)(coarse_timeline)
>>> x.shape
(5, 3, 100000)

3. Vector process with time-dependent parameters and correlations, computed on a fine-grained timeline
and 10000 paths, using one integration step for each point in the timeline (no steps parameter):

>>> timeline = np.linspace(0., 1., 101)
>>> corr = lambda t: ((1, .2, -.1*t), (.2, 1, .1), (-.1*t, .1, 1))
>>> theta, k, sigma = (lambda t: 2-t, lambda t: 2/(t+1), lambda t: np.sin(t/2))
>>> x = my_process(x0=1, vshape=3, corr=corr,
... theta=theta, k=k, sigma=sigma, paths=10*1000)(timeline)
>>> x.shape
(101, 3, 10000)
>>> gr = plt.plot(timeline, x[:, 0, :4]) # inspect a few paths
>>> plt.show(gr)

4. A scalar process with path-dependent initial conditions and parameters, integrated backwards
(i0=-1):

>>> x0 = np.random.random(10*1000)
>>> sigma = 1 + np.random.random(10*1000)
>>> x = my_process(x0=x0, sigma=sigma, paths=10*1000,
... i0=-1)(timeline)
>>> x.shape
(101, 10000)
>>> (x[-1, :] == x0).all()
True

5. A scalar process computed on a 10 x 15 grid of parameters sigma and k (note that the shape of the initial
conditions and of each parameter should be broadcastable to the values of the process across paths, i.e. to
shape vshape + (paths,)):

>>> sigma = np.linspace(0., 1., 10).reshape(10, 1, 1)
>>> k = np.linspace(1., 2., 15).reshape(1, 15, 1)
>>> x = my_process(x0=1, theta=2, k=k, sigma=sigma, vshape=(10, 15),
... paths=10*1000)(coarse_timeline)

(continues on next page)
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(continued from previous page)

>>> x.shape
(5, 10, 15, 10000)
>>> gr = plt.plot(coarse_timeline, x[:, 5, ::2, :].mean(axis=-1))
>>> plt.show()

In the example above, set steps=100 to go from inaccurate and fast, to meaningful and slow (the
plot illustrates the k-dependence of average process values).

6. Processes generated using integration results as stochasticity sources (mind using consistent vshape
and paths, and synchronizing timelines):

>>> my_dw = integrate(lambda t, x: {'dw': 1})(vshape=1, paths=10000)(timeline)
>>> p = myp(dw=my_dw, vshape=3, paths=10000,
... x0=1, sigma=((1,), (2,), (3,))) # using myp = kfunc(my_process)
>>> x = p(timeline)
>>> x.shape
(101, 3, 10000)

Now, x1, x2, x3 = = x[:, 0], x[:, 1], x[:, 2] have different sigma, but share the
same dw increments, as can be seen plotting a path:

>>> k = 0 # path to be plotted
>>> gr = plt.plot(timeline, x[:, :, k])
>>> plt.show()

If more integrations steps are needed between points in the output timeline, use steps to keep the integra-
tion timeline consistent with the one of my_dw:

>>> x = p(coarse_timeline, steps=timeline)
>>> x.shape
(5, 3, 10000)

7. Using stochasticity sources with memory (mind using consistent vshape and paths):

>>> my_dw = true_wiener_source(paths=10000)
>>> p = myp(x0=1, k=1, sigma=1, dw=my_dw, paths=10000)

>>> t1 = np.linspace(0., 1., 30)
>>> t2 = np.linspace(0., 1., 100)
>>> t3 = t = np.linspace(0., 1., 300)
>>> x1, x2, x3 = p(t1), p(t2), p(t3)
>>> y1, y2, y3 = p(t, theta=1.5), p(t, theta=1.75), p(t, theta=2)

These processes share the same underlying Wiener increments: x1, x2, x3 illustrate SDE integration
convergence as steps become smaller, and y1, y2, y3 illustrate how k affects paths, all else being equal:

>>> i = 0 # path to be plotted
>>> gr = plt.plot(t, x1(t)[:, i], t, x2(t)[:, i], t, x3(t)[:, i])
>>> gr = plt.plot(t, y1[:, i], t3, y2[:, i], t3, y3[:, i])
>>> plt.show()

2.4 How to handle the integration output

SDE integrators return process instances, a subclass of np.ndarray with a timeline stored in the t attribute
(note the shape of x, repeatedly used in the examples below):

>>> coarse_timeline = (0., 0.25, 0.5, 0.75, 1.0)
>>> timeline = np.linspace(0., 1., 101)

(continues on next page)
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(continued from previous page)

>>> x = my_process(x0=1, vshape=3, paths=1000)(timeline)
>>> x.shape
(101, 3, 1000)

x is a process instance, based on the given timeline:

>>> type(x)
<class 'sdepy.infrastructure.process'>
>>> np.isclose(timeline, x.t).all()
True

Whenever possible, a process will store references, not copies, of timeline and values. In fact,

>>> timeline is x.t
True

The first axis is reserved for the timeline, the last for paths, and axes in the middle match the shape of process
values:

>>> x.shape == x.t.shape + x.vshape + (x.paths,)
True

Calling processes interpolates in time (the result is an array, not a process):

>>> y = x(coarse_timeline)

>>> y.shape
(5, 3, 1000)

>>> type(y)
<class 'numpy.ndarray'>

All array methods, including indexing, work as usual (no overriding), and return NumPy arrays:

>>> type(x[0])
<class 'numpy.ndarray'>
>>> type(x.mean(axis=0))
<class 'numpy.ndarray'>

You can slice processes along time, values and paths with special indexing:

>>> y = x['t', ::2] # time indexing
>>> y.shape
(51, 3, 1000)
>>> y = x['v', 0] # values indexing
>>> y.shape
(101, 1000)
>>> y = x['p', :10] # paths indexing
>>> y.shape
(101, 3, 10)

The output of a special indexing operation is a process:

>>> isinstance(y, process)
True

Smart indexing is allowed. To select paths that cross x=0 at some point and for some component, use:

>>> i_negative = x.min(axis=(0, 1)) < 0
>>> y = x['p', i_negative]

(continues on next page)

8 Chapter 2. Quick Guide



SdePy Package Documentation, Release 1.0.1

(continued from previous page)

>>> y.shape == (101, 3, i_negative.sum())
True

You can do algebra with processes that either share the same timeline, or are constant (a process with a one-point
timeline is assumed to be constant), and either have the same number of paths, or are deterministic (with one path):

>>> x_const = x['t', 0] # a constant process
>>> x_one_path = x['p', 0] # a process with one path

>>> y = np.exp(x) - x_const
>>> z = np.maximum(x, x_one_path)

>>> isinstance(y, process), isinstance(z, process)
(True, True)

When integrating SDEs, the SDE parameters and/or stochasticity sources accept processes as valid values (mind
using deterministic processes, or synchronizing the number of paths, and make sure that the shape of values do
broadcast together). To use a realization of my_process as the volatility of a 3-component lognormal process,
do as follows:

>>> stochastic_vol = my_process(x0=1, paths=10*1000)(timeline)
>>> stochastic_vol_x = lognorm_process(x0=1, vshape=3, paths=10*1000,
... mu=0, sigma=stochastic_vol)(timeline)

Processes have specialized methods, and may be analyzed, and their statistics cumulated across multiple runs,
using the montecarlo class. Some examples follow:

1. Cumulative probability distribution function at t=0.5 of the process values of x across paths:

>>> cdf = x.cdf(0.5, x=np.linspace(-2, 2, 100)) # an array

2. Characteristic function at t=0.5 of the same distribution:

>>> chf = x.chf(0.5, u=np.linspace(-2, 2, 100)) # an array

3. Standard deviation across paths:

>>> std = x.pstd() # a one-path process
>>> std.shape
(101, 3, 1)

4. Maximum value reached along the timeline:

>>> xmax = x.tmax() # a constant process
>>> xmax.shape
(1, 3, 1000)

5. A linearly interpolated, or Gaussian kernel estimate (default) of the probability distribution function (pdf)
and its cumulated values (cdf) across paths, at a given time point, may be obtained using the montecarlo
class:

>>> y = x(1)[0] # 0-th component of x at time t=1
>>> a = montecarlo(y, bins=30)
>>> ygrid = np.linspace(y.min(), y.max(), 200)
>>> gr = plt.plot(ygrid, a.pdf(ygrid), ygrid, a.cdf(ygrid))
>>> gr = plt.plot(ygrid, a.pdf(ygrid, method='interp', kind='nearest'))
>>> plt.show()

6. A montecarlo instance can be used to cumulate the results of multiple simulations, across multiple
components of process values:

2.4. How to handle the integration output 9
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>>> p = my_process(x0=1, vshape=3, paths=10*1000)
>>> a = montecarlo(bins=100) # empty montecarlo instance
>>> for _ in range(10):
... x = p(timeline) # run simulation
... a.update(x(1)) # cumulate x values at t=1
>>> a.paths
100000
>>> gr = plt.plot(ygrid, a[0].pdf(ygrid), ygrid, a[0].cdf(ygrid))
>>> gr = plt.plot(ygrid, a[0].pdf(ygrid, method='interp', kind='nearest'))
>>> plt.show()

2.5 Example - Stochastic Runge-Kutta

Minimal implementation of a basic stochastic Runge-Kutta integration, scheme, as a subclass of integrator
(the A and dZ methods below are the standardized way in which equations are exposed to integrators):

>>> from numpy import sqrt
>>> class my_integrator(integrator):
... def next(self):
... t, new_t = self.itervars['sw']
... x, new_x = self.itervars['xw']
... dt = new_t - t
... A, dZ = self.A(t, x), self.dZ(t, dt)
... a, b, dw = A['dt'], A['dw'], dZ['dw']
... b1 = self.A(t, x + a*dt + b*sqrt(dt))['dw']
... new_x[...] = x + a*dt + b*dw + (b1 - b)/2 * (dw**2 - dt)/sqrt(dt)

SDE of a lognormal process, as a subclass of SDE, and classes that integrate it with the default integration method
(p1) and via my_integrator (p2):

>>> class my_SDE(SDE):
... def sde(self, t, x): return {'dt': 0, 'dw': x}
>>> class p1(my_SDE, integrator): pass
>>> class p2(my_SDE, my_integrator): pass

Comparison of integration errors, as the integration from t=0 to t=1 is carried out with an increasing number of
steps:

>>> np.random.seed(1)
>>> args = dict(dw=true_wiener_source(paths=100), paths=100, x0=10)
>>> timeline = (0, 1)
>>> steps = np.array((2, 3, 5, 10, 20, 30, 50, 100,
... 200, 300, 500, 1000, 2000, 3000))
>>> exact = lognorm_process(mu=0, sigma=1, **args)(timeline)[-1].mean()
>>> errors = np.abs(np.array([
... [p1(**args, steps=s)(timeline)[-1].mean()/exact - 1,
... p2(**args, steps=s)(timeline)[-1].mean()/exact - 1]
... for s in steps]))
>>> ax = plt.axes(label=0); ax.set_xscale('log'); ax.set_yscale('log')
>>> gr = ax.plot(steps, errors)
>>> plt.show()
>>> print('euler error: {:.2e}\n rk error: {:.2e}'.format(errors[-1,0], errors[-
→˓1,1]))
euler error: 1.70e-03

rk error: 8.80e-06
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2.6 Example - Fokker-Planck Equation

Monte Carlo integration of partial differential equations, illustrated in the simplest example of the heat equation
diff(u, t) - k*diff(u, x, 2) == 0, for the function u(x, t), i.e. the Fokker-Planck equation for
the SDE dX(t) = sqrt(2*k)*dW(t). Initial conditions at t=t0, two examples:

1. u(x, t0) = 1 for lb < x < hb and 0 otherwise,

2. u(x, t0) = sin(x).

Setup:

>>> from numpy import exp, sin
>>> from scipy.special import erf
>>> from scipy.integrate import quad
>>> np.random.seed(1)
>>> k = .5
>>> x0, x1 = 0, 10;
>>> t0, t1 = 0, 1
>>> lb, hb = 4, 6

Exact green function and solutions, to be checked against results:

>>> def green_exact(y, s, x, t):
... return exp(-(x - y)**2/(4*k*(t - s)))/sqrt(4*np.pi*k*(t - s))
>>> def u1_exact(x, t):
... return (erf((x - lb)/2/sqrt(k*(t - t0))) - erf((x - hb)/2/sqrt(k*(t -
→˓t0))))/2
>>> def u2_exact(x, t):
... return exp(-k*(t - t0))*sin(x)

Realization of the needed stochastic process, by backward integration from a grid of final values of x at t=t1,
using the preset wiener_process class (the steps keyword is added as a reminder of the setup needed for
less-than-trivial equations, it does not actually make a difference here):

>>> xgrid = np.linspace(x0, x1, 51)
>>> tgrid = np.linspace(t0, t1, 5)
>>> xp = wiener_process(paths=10000,
... sigma=sqrt(2*k), steps=100,
... vshape=xgrid.shape, x0=xgrid[..., np.newaxis],
... i0=-1)(timeline=tgrid)

Computation of the green function and of the solution u(x, t1) (note the liberal use of scipy.integrate.
quad below, enabled by the smoothness of the Gaussian kernel estimate a[i, j].pdf):

>>> a = montecarlo(xp, bins=100)
>>> def green(y, i, j):
... """green function from (y=y, s=tgrid[i]) to (x=xgrid[j], t=t1)"""
... return a[i, j].pdf(y)
>>> u1, u2 = np.empty(51), np.empty(51)
>>> for j in range(51):
... u1[j] = quad(lambda y: green(y, 0, j), lb, hb)[0]
... u2[j] = quad(lambda y: sin(y)*green(y, 0, j), -np.inf, np.inf)[0]

Comparison against exact values:

>>> y = np.linspace(x0, x1, 500)
>>> for i, j in ((1, 20), (2, 30), (3, 40)):
... gr = plt.plot(y, green(y, i, j),
... y, green_exact(y, tgrid[i], xgrid[j], t1), ':')
>>> plt.show()
>>> gr = plt.plot(xgrid, u1, y, u1_exact(y, t1), ':')

(continues on next page)
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(continued from previous page)

>>> gr = plt.plot(xgrid, u2, y, u2_exact(y, t1), ':')
>>> plt.show()
>>> print('u1 error: {:.2e}\nu2 error: {:.2e}'.format(
... np.abs(u1 - u1_exact(xgrid, t1)).mean(),
... np.abs(u2 - u2_exact(xgrid, t1)).mean()))
u1 error: 2.49e-03
u2 error: 5.51e-03

2.7 Example - Basket Lookback Option

Take a basket of 4 financial securities, with risk-neutral probabilities following lognormal processes in the Black-
Sholes framework. Correlations, dividend yields and term structure of volatility (will be linearly interpolated) are
given below:

>>> corr = [
... [1, 0.50, 0.37, 0.35],
... [0.50, 1, 0.47, 0.46],
... [0.37, 0.47, 1, 0.19],
... [0.35, 0.46, 0.19, 1]]

>>> dividend_yield = process(c=(0.20, 4.40, 0., 4.80))/100
>>> riskfree = 0 # to keep it simple

>>> vol_timepoints = (0.1, 0.2, 0.5, 1, 2, 3)
>>> vol = np.array([
... [0.40, 0.38, 0.30, 0.28, 0.27, 0.27],
... [0.31, 0.29, 0.22, 0.16, 0.18, 0.21],
... [0.24, 0.22, 0.19, 0.19, 0.21, 0.22],
... [0.35, 0.31, 0.21, 0.18, 0.19, 0.19]])
>>> sigma = process(t=vol_timepoints, v=vol.T)
>>> sigma.shape
(6, 4, 1)

The prices of the securities at the end of each quarter for the next 2 years, simulated across 50000 independent
paths and their antithetics (odd_wiener_source is used), are:

>>> maturity = 2
>>> timeline = np.linspace(0, maturity, 4*maturity + 1)
>>> p = lognorm_process(x0=100, corr=corr, dw=odd_wiener_source,
... mu=(riskfree - dividend_yield),
... sigma=sigma,
... vshape=4, paths=100*1000, steps=maturity*250)
>>> np.random.seed(1)
>>> x = p(timeline)
>>> x.shape
(9, 4, 100000)

A call option knocks in if any of the securities reaches a price below 80 at any quarter (starting from 100), and
pays the lookback maximum attained by the basket (equally weighted), minus 105, if positive. Its price is:

>>> x_worst = x.min(axis=1)
>>> x_mean = x.mean(axis=1)
>>> down_and_in_paths = (x_worst.min(axis=0) < 80)
>>> lookback_x_mean = x_mean.max(axis=0)
>>> payoff = np.maximum(0, lookback_x_mean - 105)
>>> payoff[np.logical_not(down_and_in_paths)] = 0
>>> a = montecarlo(payoff, use='even')
>>> print(a)

4.997 +/- 0.027
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CHAPTER 3

Overview

This package provides tools to state and numerically integrate Ito Stochastic Differential Equations (SDEs), in-
cluding equations with time-dependent parameters, time-dependent correlations, and stochastic jumps, and to
compute with, and extract statistics from, their realized paths.

Package contents:

1. A set of tools to ease computations with stochastic processes, as obtained from numerical integration of the
corresponding SDE, is provided via the process and montecarlo classes (see Infrastructure):

• The process class, a subclass of numpy.ndarray representing a sequence of values in time,
realized in one or several paths. Algebraic manipulations and ufunc computations are supported for
instances that share the same timeline, or are constant, and comply with numpy broadcasting rules.
Interpolation along the timeline is supported via callability of process instances. Process-specific
functionalities, such as averaging and indexing along time or across paths, are delegated to process-
specific methods, attributes and properties (no overriding of numpy.ndarray operations).

• The montecarlo class, as an aid to cumulate the results of several Monte Carlo simulations of a
given stochastic variable, and to extract summary estimates for its probability distribution function
and statistics.

2. Numerical realizations of the differentials commonly found as stochasticity sources in SDEs, are provided
via the source class and its subclasses, with or without memory of formerly invoked realizations (see
Stochasticity Sources).

3. A general framework for stochastic step by step simulations, and for numerical SDE integration, is provided
via the paths_generator class, and its cooperating subclasses integrator, SDE and SDEs (see SDE
Integration Framework). The full API allows for extensive customization of preprocessing, post-processing,
stochasticity sources instantiation and handling, integration algorithms etc. The integrate decorator
provides a simple and concise interface to handle standard use cases, via Euler-Maruyama integration.

4. Several preset stochastic processes are provided, including lognormal, Ornstein-Uhlenbeck, Hull-White n-
factor, Heston, and jump-diffusion processes (see Stochastic Processes). Each process consists of a process
generator class, a subclass of integrator and SDE, named with a _process suffix, and a definition of
the underlying SDE, a subclass of SDE or SDEs, named with a _SDE suffix.

5. Several analytical results relating to the preset stochastic processes are made available, as a general ref-
erence and for testing purposes (see Analytical Results). They are limited to the case of constant process
parameters, and with some further limitations on the parameters’ domains. Function arguments are con-
sistent with those of the corresponding processes. Suffixes _pdf, _cdf and _chf stand respectively for
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probability distribution function, cumulative probability distribution function, and characteristic function.
Black-Scholes formulae for the valuation of call and put options have been included (with prefix bs).

6. As an aid to interactive and notebook sessions, shortcuts are provided for stochasticity sources and pre-
set processes (see Shortcuts). Shortcuts have been wrapped as “kfuncs”, objects with managed keyword
arguments that simplify interactive workflow when frequent parameters tuning operations are needed (see
kfunc decorator documentation). Analytical results are wrapped as kfuncs as well.

For all sources and processes, values can take any shape, scalar or multidimensional. Correlated multivariate
stochasticity sources are supported. Poisson jumps are supported, and may be compounded with any random
variable supported by scipy.stats. Time-varying process parameters (correlations, intensity of Poisson processes,
volatilities etc.) are allowed whenever applicable. process instances act as valid stochasticity source realizations
(as does any callable object complying with a source protocol), and may be passed as a source specification
when computing the realization of a given process.

Computations are fully vectorized across paths, providing an efficient infrastructure for simulating a large number
of process realizations. Less so, for large number of time steps: integrating 100 time steps across one million
paths takes seconds, one million time steps across 100 paths takes minutes.
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CHAPTER 4

Infrastructure

process([t, x, v, c, dtype]) Array representation of a process (a subclass of
numpy.ndarray).

montecarlo([sample, axis, bins, range, use, . . . ]) Summary statistics of Monte Carlo simulations.

4.1 sdepy.process

class sdepy.process(t=0., *, x=None, v=None, c=None, dtype=None)
Array representation of a process (a subclass of numpy.ndarray).

If p is a process instance, p[i, ..., k] is the value that the k-th path of the represented process takes
at time p.t[i]. The first and last indexes of p are reserved for the timeline and paths respectively. A
process should contain no less than 1 time point and 1 path. Zero or more middle indexes refer to the values
that the process takes at each given time and path.

If p has N time points, paths is its number of paths and vshape is the shape of its values at any given time
point and path, then p.shape is (N,) + vshape + (paths,). N, vshape, paths are inferred
at instantiation from the shape of t and x, v or c parameters.

Parameters

t [array-like] Timeline of the process, as a one dimensional array with shape (N,), in in-
creasing order. Defaults to 0.

x [array-like, optional] Values of the process along the timeline and across paths. Should
broadcast to (N,) + vshape + (paths,). The shapes of t and of the firs index
of x must match. One and only one of x, v, c must be provided upon process creation,
as a keyword argument.

v [array-like, optional] Values of a deterministic process along the timeline. Should broad-
cast to (N,) + vshape. The shapes of t and of the firs index of v must match.

c [array-like, optional] Value of a constant, single-path process, with shape vshape. Each
time point of the resulting process contains a copy of c.

dtype [data-type, optional] Data-type of the values of the process. x, v or c will be con-
verted to dtype if need be.

17
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Notes

A reference and not a copy of t, x, v, c is stored if possible.

A process is a subclass of numpy.ndarray, where its values as an array are the process values along the
timeline and across paths. All numpy.ndarray methods, attributes and properties are guaranteed to act
upon such values, as would those of the parent class. Such no-overriding commitment is intended to safe-
guard predictablity of array operations on process instances; process-specific functionalities are delegated
to process-specific methods, attributes and properties.

A process with a single time point is assumed to be constant.

Processes have the __array_priority__ attribute set to 1.0 by default. Ufuncs acting on a process,
or on a process and an array, or on different processes sharing the same timeline, or on different processes
one of which is constant, return a process with the timeline of the original process(es) passed as a reference.
Ufuncs calls on different processes fail if non constant processes do not share the same timeline (interpola-
tion should be handled explicitly), or in case broadcasting rules would result in mixing time, values and/or
paths axes.

Let p be a process instance. Standard numpy indexing acts on the process values and returns numpy.ndarray
instances: in fact, p[i] is equivalent to p.x[i], i.e. the same as p.view(numpy.ndarray)[i].
Process-specific indexing is addressed via the following syntax, where i can be an integer, a multi-index or
smart indexing reference consistent with the process shape:

• p['t', i] : timeline indexing, roughly equivalent to process(t=p.t[i], x=p.x[i, ...
, :])

• p['v', i] : values indexing, roughly equivalent to process(t=p.t, x=p.x[:, i, :])

• p['p', i] : paths indexing, roughly equivalent to process(t=p.t, x=p.x[:, ...,
i])

Attributes

x Process values, viewed as a numpy.ndarray.

paths Number of paths of the process (coincides with the size of the last dimension of the
process).

vshape Shape of the values of the process.

tx Timeline of the process, reshaped to be broadcastable to the process values and paths
across time.

dt Process timeline increments, as returned by numpy.diff.

dtx Process timeline increments, as returned by numpy.diff, reshaped to be broadcastable
to the process values.

t [array] Stores the timeline of the process.

interp_kind [str] Stores the default interpolation kind, passed upon interpolation (interp
and __call__ methods) to scipy.interpolate.interp1d unless a specific kind is pro-
vided. Defaults to ‘linear’.

Methods

interp(*[, kind]) Interpolation in time of the process values.
__call__(s[, ds, kind]) Interpolation in time of process values or incre-

ments.
__getitem__(key) See documentation of the process class.

Continued on next page
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Table 2 – continued from previous page
rebase(t, *[, kind]) Change the process timeline to t, using interpola-

tion.
shapeas(vshape_or_process) Reshape process values according to the given tar-

get shape.
pcopy(**args) Copy timeline and values of the process (args are

passed to numpy.ndarray.copy).
xcopy(**args) Copy values of the process, share timeline (args

are passed to numpy.ndarray.copy).
tcopy(**args) Copy timeline of the process, share values.
pmin([out]) One path process exposing for each time point the

minimum process value attained across paths.
pmax([out]) One path process exposing for each time point the

maximum process value attained across paths.
psum([dtype, out]) One path process exposing for each time point the

sum of process values across paths.
pmean([dtype, out]) One path process exposing for each time point the

mean of process values across paths.
pvar([dtype, out, ddof]) One path process exposing for each time point the

variance of process values across paths.
pstd([dtype, out, ddof]) One path process exposing for each time point the

standard deviation of process values across paths.
tmin([out]) Constant process exposing for each path the mini-

mum process value attained along time.
tmax([out]) Constant process exposing for each path the maxi-

mum process value attained along time.
tsum([dtype, out]) Constant process exposing for each path the sum

of process values along time.
tmean([dtype, out]) Constant process exposing for each path the mean

of process values along time.
tvar([dtype, out, ddof]) Constant process exposing for each path the vari-

ance of process values along time.
tstd([dtype, out, ddof]) Constant process exposing for each path the stan-

dard deviation of process values along time.
tdiff([dt_exp, fwd]) Process increments along the timeline, optionally

weighted by time increments.
tder() Forward looking derivative of the given process,

linearly interpolated between time points.
tint() Integral of the given process, linearly interpolated

between time points.
chf([t, u]) Characteristic function of the probability distribu-

tion of process values.
cdf([t, x]) Cumulative probability distribution function of

process values.

4.1.1 sdepy.process.interp

process.interp(*, kind=None)
Interpolation in time of the process values.

Returns a callable f, as returned by scipy.interpolate.interp1d, such that f(s) approx-
imates the value of the process at time point s. f refers to the process timeline and values, without
storing copies. s may be of any shape.

Parameters

kind [string] An interpolation kind as accepted by scipy.interpolate.
interp1d. If None, defaults to the interp_kind class attribute.
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Returns

f [callable] f, as returned by scipy.interpolate.interp1d, such that f(s) approximates
the value of the process at time point s. f refers to the process timeline and values,
without storing copies.

s may be of any shape: if p is a process instance, p.interp()(s).shape ==
s.shape + p.vshape + (p.paths,).

In case p has a single time point, interpolation is not handled via scipy.
interpolate.interp1d; the process is assumed to be constant in time, and f
is a function object behaving accordingly.

See also:

process.__call__

Notes

The process is extrapolated as constant outside the timeline boundaries.

If p is a process instance, p.interp(s) is an array, not a process. If an interpolated process is
needed, it should be explicitly created using q = process(s, x=p(s)), or its shorthand q =
p.rebase(s).

4.1.2 sdepy.process.__call__

process.__call__(s, ds=None, *, kind=None)
Interpolation in time of process values or increments.

If p is a process instance and f = p.interp(kind):

• p(s) returns f(s),

• p(s, ds) returns f(s + ds) - f(s).

See also:

process.interp

4.1.3 sdepy.process.rebase

process.rebase(t, *, kind=None)
Change the process timeline to t, using interpolation.

A new process is returned with timeline t and values set to the calling process values, interpolated at
t using process.interp with the given interpolation kind.

If t is a scalar, a constant process is returned.

4.1.4 sdepy.process.shapeas

process.shapeas(vshape_or_process)
Reshape process values according to the given target shape.

Returns a process pointing to the same data as the calling process, adding new 1-dimensional axes, or
removing existing 1-dimensional axes to the left of the first dimension of process values, as needed to
make the returned process broadcastable to a process with values of the given shape.

To achieve broadcastability the unaffected dimensions, including the shape of the timeline and the
number of paths, have to be compatible.

Raises
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ValueError [if requested to remove a non 1-dimensional axis]

4.1.5 sdepy.process.pcopy

process.pcopy(**args)
Copy timeline and values of the process (args are passed to numpy.ndarray.copy).

4.1.6 sdepy.process.xcopy

process.xcopy(**args)
Copy values of the process, share timeline (args are passed to numpy.ndarray.copy).

4.1.7 sdepy.process.tcopy

process.tcopy(**args)
Copy timeline of the process, share values. (args are passed to numpy.ndarray.copy).

4.1.8 sdepy.process.pmin

process.pmin(out=None)
One path process exposing for each time point the minimum process value attained across paths.

4.1.9 sdepy.process.pmax

process.pmax(out=None)
One path process exposing for each time point the maximum process value attained across paths.

4.1.10 sdepy.process.psum

process.psum(dtype=None, out=None)
One path process exposing for each time point the sum of process values across paths.

4.1.11 sdepy.process.pmean

process.pmean(dtype=None, out=None)
One path process exposing for each time point the mean of process values across paths.

4.1.12 sdepy.process.pvar

process.pvar(dtype=None, out=None, ddof=0)
One path process exposing for each time point the variance of process values across paths.

4.1.13 sdepy.process.pstd

process.pstd(dtype=None, out=None, ddof=0)
One path process exposing for each time point the standard deviation of process values across paths.
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4.1.14 sdepy.process.tmin

process.tmin(out=None)
Constant process exposing for each path the minimum process value attained along time.

4.1.15 sdepy.process.tmax

process.tmax(out=None)
Constant process exposing for each path the maximum process value attained along time.

4.1.16 sdepy.process.tsum

process.tsum(dtype=None, out=None)
Constant process exposing for each path the sum of process values along time.

4.1.17 sdepy.process.tmean

process.tmean(dtype=None, out=None)
Constant process exposing for each path the mean of process values along time.

4.1.18 sdepy.process.tvar

process.tvar(dtype=None, out=None, ddof=0)
Constant process exposing for each path the variance of process values along time.

4.1.19 sdepy.process.tstd

process.tstd(dtype=None, out=None, ddof=0)
Constant process exposing for each path the standard deviation of process values along time.

4.1.20 sdepy.process.tdiff

process.tdiff(dt_exp=0, fwd=True)
Process increments along the timeline, optionally weighted by time increments.

Parameters

dt_exp [int or float, optional] Exponent applied to time increment weights. If 0, returns
process increments. If 1, approximates a time derivative. If 0.5, approximates realized
volatility.

fwd [bool, optional] If True, the differences are forward-looking

Returns

q [process] If p is a process shaped (N,) + p.vshape + (p.paths,), with
timeline t, p.tdiff(dt_exp, fwd) returns a process q, shaped (N-1,) + p.
vshape + (p.paths,) with values

q[i] = (p[i+1] - p[i])/(t[i+1] - t[i])**dt_exp

If fwd evaluates to True, q[i] is assigned to time point t[i] (q stores at t[i]
the increments of p looking forwards) or to t[i+1] otherwise (increments looking
backwards).

See also:

tder, tint
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Notes

if p is a process instance realizing a solution of the SDE dp(t) = sigma(t)*dw(t) across
several paths, then

p.tdiff(dt_exp=0.5).pstd()

is a 1-path process that estimates sigma(t).

4.1.21 sdepy.process.tder

process.tder()
Forward looking derivative of the given process, linearly interpolated between time points.

Shorthand for p.tdiff(dt_exp=1).

See also:

tdiff, tint

Notes

p.tder().tint() equals, within rounding errors, p['t', :-1] - p['t', 0]

4.1.22 sdepy.process.tint

process.tint()
Integral of the given process, linearly interpolated between time points.

See also:

tdiff, tder

Notes

p.tin().tder() equals, within rounding errors, p['t', :-1]

4.1.23 sdepy.process.chf

process.chf(t=None, u=None)
Characteristic function of the probability distribution of process values.

p.chf(t, u) estimates the characteristic function of interpolated process values p(t) at time(s)
t. p.chf(u) is a shorthand for p.chf(p.t, u) (no interpolation).

Parameters

t [array-like, optional] Time points at which to compute the characteristic function. If
omitted or None, the entire process timeline is used.

u [array-like, mandatory] Values at which to evaluate the characteristic function.

Returns

array Returns an array, with shape t.shape + u.shape + vshape, where
vshape is the shape of values of the calling process p, containing the average across
paths of exp(1j*u*p(t)).
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4.1.24 sdepy.process.cdf

process.cdf(t=None, x=None)
Cumulative probability distribution function of process values.

p.cdf(t, x) estimates the cumulative probability distribution function of interpolated process val-
ues p(t) at time(s) t. p.cdf(x) is a shorthand for p.cdf(p.t, x) (no interpolation).

Parameters

t [array-like, optional] Time points along the process timeline. If omitted or None, the
entire process timeline is used.

x [array-like, mandatory] Values at which to evaluate the cumulative probability distri-
bution function.

Returns

array Returns an array, with shape t.shape + x.shape + vshape, where
vshape is the shape of the values of the calling process p, containing the average
across paths of 1 if p(t) <= x else 0.

4.2 sdepy.montecarlo

class sdepy.montecarlo(sample=None, axis=-1, bins=100, range=None, use=’all’, dtype=None,
ctype=<class ’numpy.int64’>)

Summary statistics of Monte Carlo simulations.

Compute, store and cumulate results of Monte Carlo simulations across multiple runs. Cumulated results
include mean, standard deviation, standard error, skewness, kurtosis, and 1d-histograms of the distribution
of outcomes. Probability distribution function estimates are provided, based on the cumulated histograms.

Parameters

sample [array-like, optional] Initial data set to be summarized. If None, an empty instance
is provided, initialized with the given parameters.

axis [integer, optional] Axis of the given sample enumerating single data points (paths,
or different realizations of a simulated process or event). Defaults to the last axis of the
sample.

use [{‘all’, ‘even’, ‘odd’}, optional] If 'all' (default), the data set is processed as is.
If 'even' or 'odd', the sample x is assumed to consist of antithetic values along
the specified axis, assumed of even size 2*N, where x[0], x[1], ... is antithetic
respectively to x[N], x[N+1], .... Summary operations are then applied to a
sample of size N consisting of the half-sum ('even') or half-difference ('odd') of
antithetic values.

bins [array-like, or int, or str, optional] Bins used to evaluate the counts’ cumulated dis-
tribution are computed, against the first data set encountered, according to the bins
parameter:

• If int or str, it dictates the number of bins or their determination method, as passed
to numpy.histogram when processing the first sample.

• If array-like, overrides range, setting explicit bins’ boundaries, so that
bins[i][j] is the lower bound of the j-th bin used for the distribution of the
i-th component of data points.

• If None, no distribution data will be computed.

Defaults to 100.

range [(float, float) or None, optional] Bins range specification, as passed to numpy.
histogram.
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dtype [data-type, optional] Data type used for cumulating moments. If None, the data-type
of the first sample is used, if of float kind, or float otherwise.

ctype [data-type, optional] Data type used for cumulating histogram counts. Defaults to
numpy.int64.

Notes

The shape of cumulated statistics is set as the shape of the data points of the first data set processed (shape
of the first sample after summarizing along the paths axis). When cumulating subsequent samples, broad-
casting rules apply.

Indexing can be used to access single values or slices of the stored data. Given a montecarlo instance a,
a[i] is a new instance referencing statistics of the i-th component of data summarized in a (no copying).

The first data set encountered fixes the histogram bins. Points of subsequent data sets that fall outside the
bins, while properly taken into account in summary statistics (mean, standard error etc.), are ignored when
building cumulated histograms and probability distribution functions. Their number is accounted for in the
outpaths property and outerr method.

Histograms and distributions, and the related outpaths and outerr, must be invoked on single-valued
montecarlo instances. For multiple valued simulations, use indexing to select the value to be addressed
(e.g. a[i].histogram()).

Attributes

paths Number of cumulated sample data points (0 for an empty instance).

vshape Shape of cumulated sample data points.

shape Shape of cumulated sample data set, rearranged with averaging axis as last axis.

outpaths Data points fallen outside of the bins’ boundaries.

m Shortcut for the mean method.

s Shortcut for the std method.

e Shortcut for the stderr method.

stats Dictionary of cumulated statistics.

h Shortcut for the histogram method.

dh Shortcut for the density_histogram method.

Methods

update(sample[, axis]) Add the given sample to the montecarlo simula-
tion.

mean() Mean of cumulated sample data points.
var() Variance of cumulated sample data points.
std() Standard deviation of cumulated sample data

points.
skew() Skewness of cumulated sample data points.
kurtosis() Kurtosis of cumulated sample data points.
stderr() Standard error of the mean of cumulated sample

data points.
histogram() Distribution of the cumulated sample data, as a

counts histogram.
density_histogram() Distribution of the cumulated sample data, as a

normalized counts histogram.
Continued on next page
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Table 3 – continued from previous page
pdf(x[, method, bandwidth, kind]) Normalized sample probability density function,

evaluated at x.
cdf(x[, method, bandwidth, kind]) Cumulative sample probability density function,

evaluated at x.
outerr() Fraction of cumulated data points fallen outside of

the bins’ boundaries.

4.2.1 sdepy.montecarlo.update

montecarlo.update(sample, axis=-1)
Add the given sample to the montecarlo simulation.

Combines the given sample data with summary statistics obtained (if any) from former samples to
which the montecarlo instance was exposed at instantiation and at previous calls to this method.
Updates cumulated statistics and histograms accordingly.

Parameters

sample [array-like] Data set to be summarized.

axis [integer, optional] Axis of the given sample enumerating single data points (paths,
or different realizations of a simulated process or event). Defaults to the last axis of
the sample.

4.2.2 sdepy.montecarlo.mean

montecarlo.mean()
Mean of cumulated sample data points.

4.2.3 sdepy.montecarlo.var

montecarlo.var()
Variance of cumulated sample data points.

4.2.4 sdepy.montecarlo.std

montecarlo.std()
Standard deviation of cumulated sample data points.

4.2.5 sdepy.montecarlo.skew

montecarlo.skew()
Skewness of cumulated sample data points.

4.2.6 sdepy.montecarlo.kurtosis

montecarlo.kurtosis()
Kurtosis of cumulated sample data points.
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4.2.7 sdepy.montecarlo.stderr

montecarlo.stderr()
Standard error of the mean of cumulated sample data points.

a.stderr() equals a.std()/sqrt(a.paths - 1).

4.2.8 sdepy.montecarlo.histogram

montecarlo.histogram()
Distribution of the cumulated sample data, as a counts histogram.

Returns a (counts, bins) tuple of arrays representing the one-dimensional histogram data of the
distribution of cumulated samples (as returned by numpy.histogram).

4.2.9 sdepy.montecarlo.density_histogram

montecarlo.density_histogram()
Distribution of the cumulated sample data, as a normalized counts histogram.

Returns a (counts, bins) tuple of arrays representing the one-dimensional density histogram
data of the distribution of cumulated samples (as returned by numpy.histogram, the sum of the
counts times the bins’ widths is 1).

May systematically over-estimate the probability distribution within the bins’ boundaries if part of the
cumulated samples data (accounted for in the outpaths property and outerr method) fall outside.

4.2.10 sdepy.montecarlo.pdf

montecarlo.pdf(x, method=’gaussian_kde’, bandwidth=1.0, kind=’linear’)
Normalized sample probability density function, evaluated at x.

Parameters

x [array-like] Values at which to evaluate the pdf.

method [{‘gaussian_kde’, ‘interp’}] Specifies the method used to estimate the pdf
value. One of: ‘gaussian_kde’ (default), smooth Gaussian kernel density estimate
of the probability density function; ‘interp’, interpolation of density histogram values,
of the given kind.

bandwidth [float] The bandwidth of Gaussian kernels is set to bandwidth times each
bin width.

kind [str] Interpolation kind for the ‘interp’ method, passed to scipy.
interpolate.intep1d.

Returns

array An estimate of the sample probability density function of the cumulated sample
data, at the given ‘x’ values, according to the stated method.

Notes

For the ‘gaussian_kde’ method, kernels are computed at bins midpoints, weighted according to the
density histogram counts, using in each bin a bandwidth set to bandwidth times the bin width. The
resulting pdf:

• Has support on the real line.

• Integrates exactly to 1.
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• May not closely track the density histogram counts.

For the ‘interp’ method, the pdf evaluates to the density histogram counts at each bin midpoint, and to
0 at the bins boundaries and outside. The resulting pdf:

• Has support within the bins boundaries.

• Is intended to track the density histogram counts.

• Integrates close to, but not exactly equal to, 1.

May systematically overestimate the probability distribution within the bins’ boundaries if part of the
cumulated samples data (accounted for in the outpaths property and outerr method) fall above
or below the bins boundaries.

4.2.11 sdepy.montecarlo.cdf

montecarlo.cdf(x, method=’gaussian_kde’, bandwidth=1.0, kind=’linear’)
Cumulative sample probability density function, evaluated at x.

See pdf method documentation.

Notes

For the ‘gaussian_kde’ method, the integral of the Gaussian kernels is expressed in terms of scipy.
special.erf, and coincides with the integral of the pdf computed with the same method.

For the ‘interp’ method, the cdf evaluates as follows:

• At bin endpoints, to the cumulated density histogram values weighed by the bins width.

• Below the bins boundaries, to 0.

• Above the bins boundaries, to 1.

It is close to, but not exactly equal to, the integral of the pdf computed with the same method.

4.2.12 sdepy.montecarlo.outerr

montecarlo.outerr()
Fraction of cumulated data points fallen outside of the bins’ boundaries.
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CHAPTER 5

Stochasticity Sources

source(*[, paths, vshape, dtype]) Base class for stochasticity sources.
wiener_source(*[, paths, vshape, dtype, . . . ]) dw, a source of standard Wiener process (Brownian

motion) increments.
poisson_source(*[, paths, vshape, dtype, lam]) dn, a source of Poisson process increments.
cpoisson_source(*[, paths, vshape, dtype, . . . ]) dj, a source of compound Poisson process increments

(jumps).
odd_wiener_source(*[, paths, vshape]) dw, a source of standard Wiener process (Brownian

motion) increments with antithetic paths exposing op-
posite increments (averages exactly to 0 across paths).

even_poisson_source(*[, paths, vshape]) dn, a source of Poisson process increments with anti-
thetic paths exposing identical increments.

even_cpoisson_source(*[, paths, vshape]) dj, a source of compound Poisson process increments
(jumps) with antithetic paths exposing identical incre-
ments.

true_source(*[, paths, vshape, dtype, rtol, . . . ]) Base class for stochasticity sources with memory.
true_wiener_source(*[, paths, vshape, . . . ]) dw, source of standard Wiener process (brownian mo-

tion) increments with memory.
true_poisson_source(*[, paths, vshape, . . . ]) dn, a source of Poisson process increments with mem-

ory.
true_cpoisson_source(*[, paths, vshape, . . . ]) dj, a source of compound Poisson process increments

(jumps) with memory.
norm_rv([a, b]) Normal distribution with mean a and standard devia-

tion b, possibly time-dependent.
uniform_rv([a, b]) Uniform distribution between a and b, possibly time-

dependent.
exp_rv([a]) Exponential distribution with scale a, possibly time-

dependent.
double_exp_rv([a, b, pa]) Double exponential distribution, with scale a with

probability pa, and -b with probability (1 - pa), possi-
bly time-dependent.

rvmap(f, y) Map f to random variates of distribution y, possibly
time-dependent.
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5.1 sdepy.source

class sdepy.source(*, paths=1, vshape=(), dtype=None)
Base class for stochasticity sources.

Parameters

paths [int] Number of paths (last dimension) of the source realizations.

vshape [tuple of int] Shape of source values.

dtype [data-type] Data type of source values. Defaults to None.

Returns

array Once instantiated as dz, dz(t, dt) returns a random realization of the stochas-
ticity source increments from time t to time t + dt, with shape (t + dt).shape
+ vshape + (paths,). For sources with memory (true_source class and sub-
classes), dz(t) returns the realized value at time t of the source process, according to
initial conditions set at instantiation. The definition of source specific parameters, and
computation of actual source realizations, are delegated to subclasses. Defaults to an
array of numpy.nan.

Notes

Any callable object dz(t, dt), with attributes paths and vshape, returning arrays broadcastable to
shape t_shape + vshape + (paths,), where t_shape is the shape of t and/or dt, complies
with the source protocol. Such object may be passed to any of the process realization classes, to be used
as a stochasticity source in integrating or computing the relevant SDE solution. process instances, in
particular, may be used as stochasticity sources.

When calling dz(t, dt), t and/or dt can take any shape.

Attributes

size Returns the number of stored scalar values from previous evaluations, or 0 for sources
without memory.

t Returns a copy of the time points at which source values have been stored from previous
evaluations, as an array, or an empty array for sources without memory.

Methods

__call__(t[, dt]) Realization of stochasticity source values or incre-
ments.

5.1.1 sdepy.source.__call__

source.__call__(t, dt=None)
Realization of stochasticity source values or increments.

5.2 sdepy.wiener_source

class sdepy.wiener_source(*, paths=1, vshape=(), dtype=None, corr=None, rho=None)
dw, a source of standard Wiener process (Brownian motion) increments.

Parameters

paths [int] Number of paths (last dimension) of the source realizations.
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vshape [tuple of int] Shape of source values.

dtype [data-type] Data type of source values. Defaults to None.

corr [array-like, or callable, or None] Correlation matrix of the standard Wiener process
increments, possibly time-dependent, or None for no correlations, or for correlations
specified by the rho parameter. If not None, overrides rho. If corr is a square matrix
of shape (M, M), or callable with corr(t) evaluating to such matrix, the last dimen-
sion of the source values must be of size M (vshape[-1] == M), and increments
along the last axis of the source values will be correlated accordingly.

rho [array-like, or callable, or None] Correlations of the standard Wiener process in-
crements, possibly time-dependent, or None for no correlations. If rho is scalar,
or callable with rho(t) evaluating to a scalar, M=2 is assumed, and corr=((1,
rho), (rho, 1)). If rho is a vector of shape (K,), or a callable with rho(t)
evaluating to such vector, M=2*K is assumed, and the M source values along the last
vshape dimension are correlated so that rho[i] correlates the i-th and K+i-th val-
ues, other correlations being zero (corr = array((I, R), (R, I)) where I
= numpy.eye(K) and R = numpy.diag(rho)).

Returns

array Once instantiated as dw, dw(t, dt) returns a random realization of standard
Wiener process increments from time t to time t + dt, with shape (t + dt).
shape + vshape + (paths,). The increments are normal variates with mean 0,
either independent with standard deviation sqrt(dt), or correlated with covariance
matrix corr*dt, or corr(t + dt/2)*dt (the latter approximates the integral of
corr(t) from t to t + dt).

See also:

source

Notes

Realizations across different t and/or dt array elements, and/or across different paths, and/or along axes of
the source values other than the last axis of vshape, are independent. corr should be a correlation matrix
with unit diagonal elements and off-diagonal correlation coefficients, not a covariance matrix.

corr and rho values with a trailing one-dimensional paths axis are accepted, of shape (M, M, 1) or
(M/2, 1) respectively. This last axis is ignored: this allows for deterministic process instances (single
path processes) to be passed as valid corr or rho values. Path dependent corr and rho are not supported.

For time-dependent correlations, dw(t, dt) approximates the increments of a process w(t) obey-
ing the SDE dw(t) = D(t)*dz(t), where z(t) are standard uncorrelated Wiener processes, and
D(t) is a time-dependent matrix such that D(t) @ (D(t).T) == corr(t). Note that, given any
two time points s and t > s, by the Ito isometry the expectation value of (w(t)-w(s))[i] *
(w(t)-w(s))[j], i.e. the i, j element of the covariance matrix of increments of w from s to t, equals
the integral of corr(u)[i, j] in du from s to t.

For time-independent correlations, as well as for correlations that depend linearly on t, the resulting dw(t,
dt) is exact, as far as it can be within the accuracy of the pseudo-random normal variate generator of
NumPy. Otherwise, mind using small enough dt intervals.

Attributes

corr [array, or callable] Stores the correlation matrix used computing increments. May
expose either a reference to corr, if provided explicitly, or an appropriate object, in
case rho was specified.
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Methods

__call__(t, dt) See wiener_source class documentation.

5.2.1 sdepy.wiener_source.__call__

wiener_source.__call__(t, dt)
See wiener_source class documentation.

5.3 sdepy.poisson_source

class sdepy.poisson_source(*, paths=1, vshape=(), dtype=<class ’int’>, lam=1.0)
dn, a source of Poisson process increments.

Parameters

paths [int] Number of paths (last dimension) of the source realizations.

vshape [tuple of int] Shape of source values.

dtype [data-type] Data type of source values. Defaults to int.

lam [array-like, or callable] Intensity of the Poisson process, possibly time-dependent.
Should be an array of non-negative values, broadcastable to shape vshape +
(paths,), or a callable with lam(t) evaluating to such array.

Returns

array Once instantiated as dn, dn(t, dt) returns a random realization of Poisson pro-
cess increments from time t to time t + dt, with shape (t + dt).shape +
vshape + (paths,). The increments are independent Poisson variates with mean
lam*dt, or lam(t + dt/2)*dt (the latter approximates the integral of lam(t)
from t to t + dt).

See also:

source

Attributes

size Returns the number of stored scalar values from previous evaluations, or 0 for sources
without memory.

t Returns a copy of the time points at which source values have been stored from previous
evaluations, as an array, or an empty array for sources without memory.

Methods

__call__(t, dt) See poisson_source class documentation.

5.3.1 sdepy.poisson_source.__call__

poisson_source.__call__(t, dt)
See poisson_source class documentation.
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5.4 sdepy.cpoisson_source

class sdepy.cpoisson_source(*, paths=1, vshape=(), dtype=None, dn=None, ptype=<class
’int’>, lam=1.0, y=None)

dj, a source of compound Poisson process increments (jumps).

Parameters

paths [int] Number of paths (last dimension) of the source realizations.

vshape [tuple of int] Shape of source values.

dtype [data-type] Data type of source values. Defaults to None.

dn [source or source class, optional] If given, dn is used as the underlying source of Poisson
process increments, overriding the ptype and lam parameters.

ptype [data-type] Data type of Poisson process increments. Defaults to int.

lam [array-like, or callable] Intensity of the underlying Poisson process, possibly time-
dependent. See poisson_source class documentation.

y [distribution, or callable, or None] Distribution of random variates to be compounded with
the Poisson process increments, possibly time-dependent. May be any scipy.stats
distribution instance, or any object exposing an rvs(shape)method to generate inde-
pendent random variates of the given shape, or a callable with y(t) evaluating to such
object. The following preset distributions may be specified, possibly with time-varying
parameters:

• y=norm_rv(a, b) - normal distribution with mean a and standard deviation b.

• y=uniform_rv(a, b) - uniform distribution between a and b.

• y=exp_rv(a) - exponential distribution with scale a.

• y=double_exp_rv(a, b, pa) - double exponential distribution, with scale a
with probability pa, and -b with probability 1 - pa.

where a, b, pa are array-like with values in the appropriate domains, broadcastable
to a shape vshape + (paths,), or callables with a(t), b(t), pa(t) evalu-
ating to such arrays. If None, defaults to uniform_rv(a=0, b=1).

Returns

array Once instantiated as dj, dj(t, dt) returns a random realization of compound
Poisson process increments from time t to time t + dt, with shape (t + dt).
shape + vshape + (paths,). The increments are independent compound Pois-
son variates, consisting of the sum of N independent y or y(t + dt/2) variates,
where N is a Poisson variate with mean lam*dt, or lam(t + dt/2)*dt (approxi-
mates each variate being taken from y at the time of the corresponding Poisson process
event).

See also:

poisson_source, source, norm_rv , uniform_rv , exp_rv , double_exp_rv , rvmap

Notes

Preset distributions norm_rv, uniform_rv, exp_rv, double_exp_rv behave as follows:

• If all parameters are array-like, return an object with an rvs method as described above, and with
methods mean, std, var, exp_mean with signature (), returning the mean, standard devia-
tion, variance and mean of the exponential of the random variate.

• If any parameter is callable, returns a callable y such that y(t) evaluates to the corresponding distri-
bution with parameter values at time t.
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To compound the Poisson process increments with a function f(z), or time-dependent function f(t, z),
of a given random variate z, one can pass y=rvmap(f, z) to compound_poisson.

[ToDo: make a note on martingale correction using exp_mean]

Attributes

y [distribution, or callable] Stores the distribution used computing the Poisson process in-
crements.

dn_value [array of int] After each realization, this attribute stores the underlying Poisson
process increments.

y_value [list of array] After each realization, this attribute stores the underlying y random
variates.

Methods

__call__(t, dt) See cpoisson_source class documentation.

5.4.1 sdepy.cpoisson_source.__call__

cpoisson_source.__call__(t, dt)
See cpoisson_source class documentation.

5.5 sdepy.odd_wiener_source

class sdepy.odd_wiener_source(*, paths=2, vshape=(), **args)
dw, a source of standard Wiener process (Brownian motion) increments with antithetic paths exposing
opposite increments (averages exactly to 0 across paths).

Once instantiated as dw with paths=2*K paths, x = dw(t, dt) consists of leading K paths with in-
dependent increments, and trailing K paths consisting of a copy of the leading paths with sign reversed
(x[..., i] == -x[..., K + i]).

See also:

wiener_source

Attributes

size Returns the number of stored scalar values from previous evaluations, or 0 for sources
without memory.

t Returns a copy of the time points at which source values have been stored from previous
evaluations, as an array, or an empty array for sources without memory.

Methods

__call__

5.6 sdepy.even_poisson_source

class sdepy.even_poisson_source(*, paths=2, vshape=(), **args)
dn, a source of Poisson process increments with antithetic paths exposing identical increments.
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Once instantiated as dn with paths=2*K paths, x = dn(t, dt) consists of leading K paths with in-
dependent increments, and trailing K paths consisting of a copy of the leading paths: (x[..., i] ==
x[..., K + i]). Intended to be used together with odd_wiener_source to generate antithetic
paths in jump-diffusion processes.

See also:

source, poisson_source

Attributes

size Returns the number of stored scalar values from previous evaluations, or 0 for sources
without memory.

t Returns a copy of the time points at which source values have been stored from previous
evaluations, as an array, or an empty array for sources without memory.

Methods

__call__

5.7 sdepy.even_cpoisson_source

class sdepy.even_cpoisson_source(*, paths=2, vshape=(), **args)
dj, a source of compound Poisson process increments (jumps) with antithetic paths exposing identical in-
crements.

Once instantiated as dj with paths=2*K paths, x = dj(t, dt) consists of leading K paths with in-
dependent increments, and trailing K paths consisting of a copy of the leading paths: x[..., i] equals
x[..., K + i]. Intended to be used together with odd_wiener_source to generate antithetic paths
in jump-diffusion processes.

See also:

source, cpoisson_source

Attributes

size Returns the number of stored scalar values from previous evaluations, or 0 for sources
without memory.

t Returns a copy of the time points at which source values have been stored from previous
evaluations, as an array, or an empty array for sources without memory.

Methods

__call__

5.8 sdepy.true_source

class sdepy.true_source(*, paths=1, vshape=(), dtype=None, rtol=’max’, t0=0.0, z0=0.0)
Base class for stochasticity sources with memory.

Parameters

paths, vshape, dtype See source class documentation.
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rtol [float, or ‘max’] relative tolerance used in assessing the coincidence of t with the time
of a previously stored realization of the source. If set to max, the resolution of the
float type is used.

t0, z0 [array-like] z0 is the initial value of the source at time t0.

Returns

array Once instantiated as dz, dz(t) returns the realized value at time t of the source
process, such that dz(t0) = z0, with shape (t + dt).shape + vshape +
(paths,), as specified by subclasses. dz(t, dt) returns dz(t + dt) -
dz(t). New values of dz(t) should follow a probability distribution conditional
on values realized in previous calls. Defaults to an array of numpy.nan.

See also:

source

Attributes

size Returns the number of stored scalar values from previous evaluations, or 0 for sources
without memory.

t Returns a copy of the time points at which source values have been stored from previous
evaluations, as an array, or an empty array for sources without memory.

Methods

__getitem__(index) Reference to a sub-array or element of the source
values sharing the same memory of past realiza-
tions.

new_inside(z1, z2, t1, t2, s) Generate a new process increment, at a time s be-
tween those of formerly realized values.

new_outside(z, t, s) Generate a new process increment, at a time s
above or below those of formerly realized values.

5.8.1 sdepy.true_source.new_inside

true_source.new_inside(z1, z2, t1, t2, s)
Generate a new process increment, at a time s between those of formerly realized values.

Parameters

z1, z2 [array] Formerly realized values of the source at times t1, t2 respectively.

t1, t2 [float] t1, t2 are the times of former realizations closest to s, with t1 < s <
t2.

Returns

array Value of the source at s, conditional on formerly realized value z1 at t1 and z2
at t2. Should be defined by subclasses. Defaults to an array of numpy.nan.

5.8.2 sdepy.true_source.new_outside

true_source.new_outside(z, t, s)
Generate a new process increment, at a time s above or below those of formerly realized values.

Parameters

z [array] Formerly realized value of the source at time t.
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t, s [float] t is the highest (lowest) time of former realizations, and s is above (below) t.

Returns

array Value of the source at s, conditional on formerly realized value z at t. Should be
defined by subclasses. Defaults to an array of numpy.nan.

5.9 sdepy.true_wiener_source

class sdepy.true_wiener_source(*, paths=1, vshape=(), dtype=None, corr=None, rho=None,
rtol=’max’, t0=0.0, z0=0.0)

dw, source of standard Wiener process (brownian motion) increments with memory.

Parameters

paths, vshape, dtype, corr, rho

See wiener_source class documentation.

rtol, t0, z0 See true_source class documentation.

Returns

array Once instantiated as dw, dw(t) returns z0 plus a realization of the standard Wiener
process increment from time t0 to t, and dw(t, dt) returns dw(t + dt) -
dw(t). The returned values follow a probability distribution conditional on values
realized in previous calls.

Notes

For time-independent correlations, as well as for correlations that depend linearly on t, the resulting w(t)
is exact, as far as it can be within the accuracy of the pseudo-random normal variate generator of NumPy.
Otherwise, mind running a first evaluation of w(t) on a sequence of consecutive closely spaced time points
in the region of interest.

Given t1 < s < t2, the value of w(s) conditional on w(t1) and w(t2) is computed as follows.

Let A and B be respectively the time integral of corr(t) between t1 and s, and between s and t2, such
that:

• A + B is the expected covariance matrix of w(t2) - w(t1),

• A is the expected covariance matrix of w(s) - w(t1),

• B is the expected covariance matrix of w(t2) - w(s).

Let Z = B @ np.linalg.inv(A + B), and let y be a random normal variate, independent from
w(t1) and w(t2), with covariance matrix Z @ A (note that the latter is a symmetric matrix, as a conse-
quence of the symmetry of A and B).

Then, the follwing expression provides for a w(s)with the needed correlations, and with w(s) - w(t1)
independent from w(t1), w(t2) - w(s) independent from w(s):

w(s) = Z @ w(t1) + (1 - Z) @ w(t2) + y

This is easily proved by direct computation of the relevant correlation matrices, and by using the fact that
the random variables at play are jointly normal, and hence lack of correlation entails independence.

Note that, when invoking w(s), A is approximated as corr((t1+s)/2)*(s-t1), and B is approxi-
mated as corr(s+t2)/2)*(t2-s).

Attributes

size Returns the number of stored scalar values from previous evaluations, or 0 for sources
without memory.
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t Returns a copy of the time points at which source values have been stored from previous
evaluations, as an array, or an empty array for sources without memory.

Methods

See source and true_source methods.

5.10 sdepy.true_poisson_source

class sdepy.true_poisson_source(*, paths=1, vshape=(), dtype=<class ’int’>, lam=1.0,
rtol=’max’, t0=0.0, z0=0)

dn, a source of Poisson process increments with memory.

Parameters

paths, vshape, dtype, lam See poisson_source class documentation.

rtol, t0, z0 See true_source class documentation.

Returns

array Once instantiated as dn, dn(t) returns z0 plus a realization of Poisson process
increments from time t0 to t, and dn(t, dt) returns dn(t + dt) - dn(t).
The returned values follow a probability distribution conditional on the realized values
in previous calls.

See also:

source, poisson_source, true_source

Notes

For time-dependent intensity lam(t) the result is approximate, mind running a first evaluation on a se-
quence of consecutive closely spaced time points in the region of interest.

Attributes

size Returns the number of stored scalar values from previous evaluations, or 0 for sources
without memory.

t Returns a copy of the time points at which source values have been stored from previous
evaluations, as an array, or an empty array for sources without memory.

Methods

See ‘‘source‘‘ and ‘‘true_source‘‘ methods.

5.11 sdepy.true_cpoisson_source

class sdepy.true_cpoisson_source(*, paths=1, vshape=(), dtype=None, rtol=’max’, t0=0.0,
z0=0.0, dn=None, ptype=<class ’int’>, lam=1.0,
y=None)

dj, a source of compound Poisson process increments (jumps) with memory.

Parameters
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paths, vshape, dtype, dn, ptype, lam, y See cpoisson_source class documentation.

rtol, t0, z0 See true_source class documentation.

Returns

array Once instantiated as dj, dj(t) returns z0 plus a realization of compound Pois-
son process increments from time t0 to t, and dj(t, dt) returns dj(t + dt) -
dj(t). The returned values follow a probability distribution conditional on the realized
values in previous calls.

See also:

source, cpoisson_source, true_source

Notes

For time-dependent intensity lam(t) and compounding random variable y(t) the result is approximate,
mind running a first evaluation on a sequence of consecutive closely spaced time points in the region of
interest.

Attributes

size Returns the number of stored scalar values from previous evaluations, or 0 for sources
without memory.

t Returns a copy of the time points at which source values have been stored from previous
evaluations, as an array, or an empty array for sources without memory.

Methods

See ‘‘source‘‘ and ‘‘true_source‘‘ methods.

5.12 sdepy.norm_rv

sdepy.norm_rv(a=0, b=1)
Normal distribution with mean a and standard deviation b, possibly time-dependent.

Wraps scipy.stats.norm(loc=a, scale=b).

See also:

cpoisson_source

5.13 sdepy.uniform_rv

sdepy.uniform_rv(a=0, b=1)
Uniform distribution between a and b, possibly time-dependent.

Wraps scipy.stats.uniform(loc=a, scale=b-a).

See also:

cpoisson_source
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5.14 sdepy.exp_rv

sdepy.exp_rv(a=1)
Exponential distribution with scale a, possibly time-dependent.

Wraps scipy.stats.expon(scale=a). The probability distribution function is:

• if a > 0, pdf(x) = a*exp(-a*x), with support in [0, inf)

• if a < 0, pdf(x) = -a*exp( a*x), with support in (-inf, 0]

See also:

cpoisson_source

5.15 sdepy.double_exp_rv

sdepy.double_exp_rv(a=1, b=1, pa=0.5)
Double exponential distribution, with scale a with probability pa, and -b with probability (1 - pa), possibly
time-dependent.

Double exponential distribution, with probability distribution

• for x in [0, inf), pdf(x) = pa*exp(-a*x)*a

• for x in (-inf, 0), pdf(x) = (1-pa)*exp(b*x)*b

where a and b are positive and pa is in [0, 1].

See also:

cpoisson_source

5.16 sdepy.rvmap

sdepy.rvmap(f, y)
Map f to random variates of distribution y, possibly time-dependent.

Parameters

f [callable] Callable with signature f(y), or f(t, y) or f(s, y), to be mapped to the
random variates of y or y(t)

y [distribution, or callable] Distribution, possibly time-dependent, as accepted by
cpoisson_source.

Returns

new_y [Distribution, or callable] An object with and rvs(shape) method,
or a callable with new_y(t) evaluating to such object, as accepted by
cpoisson_source. new_y.rvs(shape), or new_y(t).rvs(shape),
returns f(y.rvs(shape)), or f([t, ] y(t).rvs(shape).

See also:

cpoisson_source, norm_rv , uniform_rv , exp_rv , double_exp_rv

Notes

new_y does not provide any mean, std, var, exp_mean method.

To be recognized as time-dependent, f should have its first parameter named t or s.

40 Chapter 5. Stochasticity Sources



CHAPTER 6

SDE Integration Framework

paths_generator(*[, paths, xshape, wshape,
. . . ])

Step by step generation of stochastic simulations
across multiple paths, intended for subclassing.

integrator(*[, paths, xshape, wshape, . . . ]) Step by step numerical integration of Ito Stochastic
Differential Equations (SDEs), intended for subclass-
ing.

SDE(*[, paths, vshape, dtype, steps, i0, . . . ]) Class representation of a user defined Stochastic Dif-
ferential Equation (SDE), intended for subclassing.

SDEs(*[, paths, vshape, dtype, steps, i0, . . . ]) Class representation of a user defined system of
Stochastic Differential Equations (SDEs), intended
for subclassing.

integrate([sde, q, sources, log, addaxis]) Decorator for Ito Stochastic Differential Equation
(SDE) integration.

6.1 sdepy.paths_generator

class sdepy.paths_generator(*, paths=1, xshape=(), wshape=(), dtype=None, steps=None,
i0=0, info=None, getinfo=True)

Step by step generation of stochastic simulations across multiple paths, intended for subclassing.

Given a number of requested paths, shapes and output timeline, encapsulates the low level tasks of memory
allocation and step by step iteration along the timeline.

The definition of the target iteration steps (pace method), initialization (begin method), computation of
next step (next method), storing results at points on the requested timeline (store method), cleaning up
(end method) and evaluation of a final result to be returned (exit method), are delegated to subclasses.

Instances are callables with signature (timeline) that iterate subclass methods along the given timeline,
using the configuration set out at instantiation.

Parameters

paths [int] Size of last axis of the allocated arrays (number of paths of the simulation).

xshape [int or tuple of int] Shape of values that will be stored at each point of the output
timeline.

wshape [int or tuple of int] Shape of working space used for step by step iteration.
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dtype [data-type] Data-type of the output and working space.

steps [iterable, or int, or None] Specification of the time points to be touched during the
simulation (as defined by the pace method). Default behaviour is:

• if None, the simulated steps coincide with the timeline;

• if int, the simulated steps touch all timeline points, as well as steps equally spaced
points between the minimum and maximum point in the timeline;

• if iterable, the simulated steps touch all timeline points, as well as all values in steps
between the minimum and maximum points in the timeline.

i0 [int] Index along the timeline at which the simulation starts. The timeline is assumed to
be in ascending order. The simulation is performed backwards from timeline[i0]
to timeline[0], and forwards from timeline[i0] to timeline[-1].

info [dict, or None] Diagnostic information about the simulation is stored in this dictionary
and is accessible as the info attribute. If None, a new empty dict is used.

getinfo [bool] If True (default), records basic information in the info attribute about
the last performed simulation (if the simulation is both backwards and forwards, the
information pertains to the forwards part only). Used by subclasses to enable/disable
diagnostic info generation.

Returns

simulation results Once instantiated as p, p(timeline) runs the simulation along the
given timeline, based on parameters of instantiation, returning results as determined by
subclass methods. Defaults to (tt, xx) where tt is a reference to timeline and
xx is an array of numpy.nan of the requested shape.

See also:

integrator, SDE, SDEs

Notes

All initialization parameters are stored as attributes of the same name, and may be accessed by subclasses.

During the simulation, a itervars attribute is present, pointing to a dictionary that contains the following
items, to be used by subclass methods (double letters refer to values along the entire timeline, single letters
refer to single time points):

• steps_tt : an array of all time points to be touched by the simulation. It consolidates the output
timeline and the time points to be touched, as specified by steps.

• tt: the output timeline.

• xx: simulation output, an array of shape tt.shape + xshape + (paths,). xx[i] is the
simulated value at time tt[i].

• sw: working space for time points, an array of shape (depth,).

• xw: working space for paths generation, an array of objects of shape (depth,), where each of
xw[k] is an array of shape wshape + (paths,).

• reverse : True if the simulation runs backwards, False otherwise. If True, steps_tt and tt
are in descending order.

• i : such that tt[i] is the next point along the timeline that will be reached (when invoking next),
or the point that was just reached (when invoking store).

Note that:

• sw and xw are rolled at each iteration: subclass methods should not rely on storing references to
their elements across iterations.
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• xw[k][...] = value broadcasts value into the allocated memory of xw[k] (this is usu-
ally what you want), xw[k] = value stores value, as an object, in xw[k] (avoid).

• xx and xw[k] are initialized to arrays filled with numpy.nan.

Attributes

depth [int] Number of time points to be stored in the working space. Defaults to 2.

Methods

__call__(timeline) Run the simulation along the given timeline.
pace(timeline) Target integration steps for the current integration.
begin() Set initial conditions.
next() Numerical simulation step.
store(i, k) Store the current integration step into the integra-

tion output.
end() End of iteration optional tasks.
exit(tt, xx) Final tasks and construction of the output value(s).

6.1.1 sdepy.paths_generator.__call__

paths_generator.__call__(timeline)
Run the simulation along the given timeline.

Parameters

timeline [array-like] A one dimensional array of strictly increasing numbers, defining
the timeline of the simulation.

Returns

Simulation results, as specified by subclass methods.

6.1.2 sdepy.paths_generator.pace

paths_generator.pace(timeline)
Target integration steps for the current integration.

Parameters

timeline [array] Requested simulation timeline, cast as an array of float data-type.

Returns

array Target time points to be touched during the simulation (typically, more thinly
spaced than the output time points in timeline, based on the steps parameter), to
be merged with timeline.

May be overridden by subclasses. For default behaviour,

see paths_generator class documentation.

6.1.3 sdepy.paths_generator.begin

paths_generator.begin()
Set initial conditions.

Given the time points sw[0], ..., sw[depth - 2], should define and store in the working
space the corresponding initial values xw[0], ..., xw[depth - 2]. Note that when begin

6.1. sdepy.paths_generator 43



SdePy Package Documentation, Release 1.0.1

gets called, sw[depth - 1] and xw[depth - 1] are undefined and will be respectively set, and
computed, at the first iteration.

Notes

It is called once for each backwards and forwards simulation, after memory allocation and before
starting the iteration along the time points in steps_tt.

Outline of expected code for depth=2:

# access itervars
iv = self.itervars
sw, xw = iv['sw'], iv['xw']

# this is the initial time, taken from the
# simulation timeline
t0 = sw[0]
assert t0 == iv['steps_tt'][0] == iv['tt'][0]

# store the initial condition
xw[0][...] = 1.

Must be provided by subclasses.

6.1.4 sdepy.paths_generator.next

paths_generator.next()
Numerical simulation step.

Given the points sw[0], ..., sw[depth - 2] and the corresponding values xw[0], ...,
xw[depth - 2], should:

1. Optionally modify the target next time point sw[depth - 1], to a value between sw[depth
- 2] and sw[depth - 1] (this allows for adaptive time steps, with the constraint of touching
all point specified by the output timeline and the steps parameter).

2. Compute the corresponding value xw[depth - 1]

Notes

It is called once per iteration step.

Outline of expected code for depth=2:

# access itervars
iv = self.itervars
sw, xw = iv['sw'], iv['xw']

# get starting values, and time step to be taken
s0, x0 = sw[0], xw[0]
ds = sw[1] - sw[0]

# compute and store the next step
xw[1][...] = x0 + ds

Must be provided by subclasses.
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6.1.5 sdepy.paths_generator.store

paths_generator.store(i, k)
Store the current integration step into the integration output.

Should take the k-th value in the working space xw, transform it if need be, and store it as the output
xx[i] at the output time point tt[i].

Parameters

i [int] Index of the output timeline point to set as output.

k [int] Index of the working space point to use as input.

Notes

It is called initially to store the initial values that belong to the output timeline, among those put into
the working space by begin, and later during the iteration, each time the simulation touches a point
on the output timeline.

Outline of expected code for xshape == wshape and an exponentiation transformation:

# access itervars
iv = self.itervars
sw, xw = iv['sw'], iv['xw']
xx = iv['xx']

# this is the current time, also found
# along the output timeline
s = sw[k]
assert s == iv['tt'][i]

# transform and store
np.exp(xw[k], out=xx[i])

Must be provided by subclasses.

6.1.6 sdepy.paths_generator.end

paths_generator.end()
End of iteration optional tasks.

It is called once for each backwards and forwards simulation, once the final point in the output timeline
has been reached and the simulation ends.

After it is called, itervars are deleted.

May be provided by subclasses.

6.1.7 sdepy.paths_generator.exit

paths_generator.exit(tt, xx)
Final tasks and construction of the output value(s).

Parameters

tt [array] Output timeline. It is the timeline passed to the __call__ method, cast as
an array, with its original data-type (if the data-type is of integer kind, the simulation
is carried out using floats).

xx [array] Output values along the timeline, as computed by next and stored by store
methods.
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Notes

It is called once, after backwards and/or forwards simulations have been completed, and its return
value is returned.

Default implementation:

return tt, xx

May be provided by subclasses.

6.2 sdepy.integrator

class sdepy.integrator(*, paths=1, xshape=(), wshape=(), dtype=None, steps=None, i0=0,
info=None, getinfo=True, method=’euler’)

Step by step numerical integration of Ito Stochastic Differential Equations (SDEs), intended for subclassing.

For usage, see the SDE class documentation.

This class encapsulates SDE integration methods, and cooperates with the SDE class, that should always
have precedence in method resolution order. As long as the respective APIs are complied with, a new
integrator stated as an integrator subclass will interoperate with existing SDEs (as described by SDE
subclasses), and a new SDE will interoperate with existing integrators.

Parameters

paths, xshape, wshape, dtype, steps, i0, info, getinfo See paths_generator class
documentation.

method [string] Integration method. Defaults to 'euler', for the Euler-Maruyama
method (at present, this single method is supported). It is stored as an attribute of the
same name.

Returns

process Once instantiated as p, p(timeline) performs the integration along the given
timeline, based on parameters of instantiation, returning the resulting process as deter-
mined by the cooperating SDE subclass and the chosen integration method. Defaults to
a process of numpy.nan along the given timeline.

See also:

paths_generator, SDE, SDEs

Notes

The equation to be integrated is exposed to the integration algorithm in a standardized form, via methods
A and dZ delegated to a cooperating SDE class. The latter should take care of equation parameters, initial
conditions, expected paths and shapes, and should instantiate all necessary stochasticity sources.

The integration method is exposed as the next method to the paths_generator parent class.

If the getinfo attribute is set to True, at each integration step the following items are added to the
itervars dictionary, made available to subclasses to track the integration progress:

• last_t: starting time point of the last integration step.

• last_dt: time increment of the last integration step.

• last_x : starting value of the process, at time last_t.

• last_A: dictionary of the last computed values of the SDE terms, at time last_t.
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• last_dZ: dictionary of the last realized SDE stochasticity source values, cumulated in the interval
from last_t to last_t + last_dt.

• new_x : computed value of the process, at time last_t + last_dt.

This becomes relevant in case the output timeline is coarse (e.g. just the initial and final time) but diagnostic
information is needed about all integration steps performed (e.g., to track how often the process has changed
sign, or to count the number of realized jumps).

Methods

A(t, x) Value of the SDE terms at time t and process value
x.

dZ(t, dt) Value of the SDE differentials at time t, for time
increment dt.

next() Perform an integration step with the requested
method.

euler_next() Euler-Maruyama integration step.

6.2.1 sdepy.integrator.A

integrator.A(t, x)
Value of the SDE terms at time t and process value x.

Example of expected code for the SDE dx = (1 - x)*dt + 2*dw(t):

return {
'dt': (1 - x),
'dw': 2
}

The SDE class takes care of casting user-specified equations into this format.

6.2.2 sdepy.integrator.dZ

integrator.dZ(t, dt)
Value of the SDE differentials at time t, for time increment dt.

Example of expected code for the SDE dx = (1 - x)*dt + 2*dw(t), where x has two com-
ponents:

shape = (2, self.paths)
return {

'dt': dt,
'dw': wiener_source(vshape=2, paths=self.paths)(0, dt)
}

The SDE class takes care of instantiating user-specified stochasticity sources and casting them into this
format.

6.2.3 sdepy.integrator.next

integrator.next()
Perform an integration step with the requested method.
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6.2.4 sdepy.integrator.euler_next

integrator.euler_next()
Euler-Maruyama integration step.

6.3 sdepy.SDE

class sdepy.SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True,
method=’euler’, **args)

Class representation of a user defined Stochastic Differential Equation (SDE), intended for subclassing.

This class aims to provide an easy to use and flexible interface, allowing to specify user-defined SDEs and
expose them in a standardized form to the cooperating integrator class (the latter should always follow
in method resolution order). A minimal definition of an Ornstein-Uhlenbeck process is as follows:

>>> from sdepy import SDE, integrator
>>> class my_process(SDE, integrator):
... def sde(self, t, x, theta=1., k=1., sigma=1.):
... return {'dt': k*(theta - x), 'dw': sigma}

An SDE is stated as a dictionary, containing for each differential the value of the corresponding coefficient:

dx = f(t, x)*dt + g(t, x)*dw + h(t, x)*dj

translates to:

{'dt': f(t, x), 'dw': g(t, x), 'dj': h(t, x)}

Instances are callables with signature (timeline) that integrate the SDE along the given timeline, using
the configuration set out in the instantiation parameters:

>>> P = my_process(x0=1, sigma=0.5, paths=100*1000, steps=100)
>>> x = P(timeline=(0., 0.5, 1.))
>>> x.shape
(3, 100000)

Subclasses can specify or customize: the equation and its parameters (sde method), initial conditions
and preprocessing (init method and log attribute), shape of the values to be computed and stored
(shapes method), stochastic differentials appearing in the equation (sources attribute) and their param-
eters and initialization (methods source_dt, source_dw, source_dn, source_dj, or any custom
source_{id} method for a corresponding differential '{id}' declared in sources and used as a key
in sde return values), optional non array-like parameters (more method), how to store results at points on
the requested timeline (let method), and postprocessing (result method and log attribute).

Parameters

paths [int] Number of paths of the process.

vshape [int or tuple of int] Shape of the values of the process.

dtype [data-type, optional] Data-type of the process. Defaults to the numpy default.

steps [iterable, or int, or None] Specification of the time points to be touched during inte-
gration (as accepted by a cooperating integrator class). Default behaviour is:

• if None, the simulated steps coincide with the timeline;

• if int, the simulated steps touch all timeline points, as well as steps equally spaced
points between the minimum and maximum point in the timeline;

• if iterable, the simulated steps touch all timeline points, as well as all values in steps
between the minimum and maximum points in the timeline.
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i0 [int] Index along the timeline at which the integration starts. The timeline is assumed to
be in ascending order. Initial conditions are set at timeline[i0], the integration is
performed backwards from timeline[i0] to timeline[0], and forwards from
timeline[i0] to timeline[-1].

info [dict, optional] Diagnostic information about the integration is stored in this dictionary
and is accessible as the info attribute. Defaults to a new empty dict.

getinfo [bool] If True, subclass methods info_begin, info_next, info_store,
info_end are invoked during integration. Defaults to True.

method [str] Integration method, as accepted by the integrator cooperating class.

**args [SDE-specific parameters] SDE parameters and initial conditions, as implied by the
signature of sde, init and more methods, and stochasticity sources parameters, as
implied by the signature of source_{id} methods. Each keyword should be used
once (e.g. corr, a source_dw parameter, cannot be used as the name of a SDE
parameter).

Returns

process Once instantiated as p, p(timeline) performs the integration along the given
timeline, based on parameters of instantiation, and returns the resulting process as de-
fined by subclass methods. Defaults to a process of numpy.nan along the given time-
line.

See also:

paths_generator, integrator, SDEs

Notes

Custom stochastic differentials used in the SDE should be recognized, and treated appropriately, by the
chosen integration method. This may require customization of the next method of the integrator
class.

All named initialization parameters (paths, steps etc.) are stored as attributes.

Notes on SDE-specific parameters:

• init parameters are converted to arrays via np.asarray.

• sde and source quantitative parameters may be array-like, or time dependent with signature (t).

• both are converted to arrays via np.asarray, and for both, their constant value, or values at
each time point, should be broadcastable to a shape wshape + (paths,).

• more parameters undergo no further initialization, before being made available to the shapes
and more methods.

If getinfo is True, the invoked info subclass methods may initialize and cumulate diagnostic information
in items of the info dictionary, based on read-only access of the internal variables set during integration
by paths_generator and integrator cooperating classes, as exposed in the itervars attribute.

Attributes

sources [set or dict] As a class attribute, holds the names of the differentials 'dz' ex-
pected to appear in the equation. As an instance attribute, sources['dz'] is an
object, complying with the source protocol, that instantiates the differential 'dz'
used during integration. sources['dz'](t, dt) is computed at every step for
each 'dz' in sources, as required by the chosen integration method.

args [dict] Stores parameters passed as **args upon initialization of the SDE.

log [bool] If True, the natural logarithm of the initial values set by the initmethod is taken
as the initial value of the integration, and the result of the integration is exponentiated
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back before serving it to the result method. The sde should expose the appropriate
equation for integrating the logarithm of the intended process.

Methods

sde(t, x) Stochastic Differential Equation (SDE) to be inte-
grated.

shapes(vshape) Shape of the values to be computed and stored
upon integration of the SDE.

source_dt() Setup a source of deterministic increments, to be
used as ‘dt’ during integration.

source_dw([dw, corr, rho]) Setup a source of standard Wiener process (Brow-
nian motion) increments, to be used as ‘dw’ during
integration.

source_dn([dn, ptype, lam]) Setup a source of Poisson process increments, to
be used as ‘dn’ during integration.

source_dj([dj, dn, ptype, lam, y]) Set up a source of compound Poisson process in-
crements (jumps), to be used as ‘dj’ during inte-
gration.

more() Further optional non array parameters, and initial-
izations.

init(t, out_x[, x0]) Set initial conditions for SDE integration.
let(t, out_x, x) Store the value of the integrated process at time

point t belonging to the requested output timeline.
result(tt, xx) Compute the integration output.
info_begin() Optional diagnostic information logging function,

called before the integration begins.
info_next() Optional diagnostic information logging function,

called after each integration step.
info_store() Optional diagnostic information logging function,

called after each invocation of the let method.
info_end() Optional diagnostic information logging function,

called after the integration has been completed.

6.3.1 sdepy.SDE.sde

SDE.sde(t, x)
Stochastic Differential Equation (SDE) to be integrated.

Parameters

t [float] Time point at which the SDE should be evaluated.

x [array] Values that the stochastic process takes at time t.

sde_args [zero or more arrays, as keyword arguments] SDE parameters, as implied by
the sde method signature. Passed upon instantiation of the SDE class as possibly
time-dependent array-like, these parameters are served to the sde method once eval-
uated at t and converted to arrays via np.asarray.

Returns

sde_terms [dict of arrays] Contains, for each differential stated in the source attribute,
the value of the corresponding coefficient in the represented SDE.
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Notes

x should be treated as read-only.

6.3.2 sdepy.SDE.shapes

SDE.shapes(vshape)
Shape of the values to be computed and stored upon integration of the SDE.

Parameters

vshape [int or tuple of int] Shape of the values of the integration result, as requested
upon instantiation of SDE.

Returns

vshape [int or tuple of int] Confirms or overrides the given vshape.

xshape [int or tuple of int] Shape of the values stored during integration at the out-
put time points. out_x array passed to the let method has shape xshape +
(paths,). Defaults to vshape.

wshape [int or tuple of int] Shape of the working space used during integration. x values
passed to the sde and let methods have shape wshape + (paths,). Defaults
to vshape.

Notes

xshape and wshape are passed to the parent paths_generator class.

hull_white_SDE and heston_SDE classes illustrate use cases for different values of vshape,
xshape and/or wshape.

6.3.3 sdepy.SDE.source_dt

SDE.source_dt()
Setup a source of deterministic increments, to be used as ‘dt’ during integration.

Returns

An object ‘‘z‘‘ complying with the ‘‘source‘‘ protocol,

such that ‘‘z(t, dt) == dt‘‘.

6.3.4 sdepy.SDE.source_dw

SDE.source_dw(dw=None, corr=None, rho=None)
Setup a source of standard Wiener process (Brownian motion) increments, to be used as ‘dw’ during
integration.

Parameters

dw [source, or source subclass, or None] If an object complying with the source
protocol, it is returned (corr and rho are ignored). If a source subclass, it is
instantiated with the given parameters, and returned. If None, a new instance of
wiener_source is returned, with the given parameters.

corr, rho [see wiener_source documentation]

Returns

An object complying with the ‘‘source‘‘ protocol,
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instantiating the requested stochasticity source.

The shape of source values is set to ‘‘wshape‘‘.

See also:

wiener_source

6.3.5 sdepy.SDE.source_dn

SDE.source_dn(dn=None, ptype=<class ’int’>, lam=1.0)
Setup a source of Poisson process increments, to be used as ‘dn’ during integration.

Parameters

dn [source, or source subclass, or None] If an object complying with the source
protocol, it is returned (ptype and lam are ignored). If a source subclass, it is
instantiated with the given parameters, and returned. If None, a new instance of
poisson_source is returned, with the given parameters.

ptype, lam [see poisson_source documentation]

Returns

An object complying with the ‘‘source‘‘ protocol,

instantiating the requested stochasticity source.

The shape of source values is set to ‘‘wshape‘‘.

See also:

poisson_source

6.3.6 sdepy.SDE.source_dj

SDE.source_dj(dj=None, dn=None, ptype=<class ’int’>, lam=1.0, y=None)
Set up a source of compound Poisson process increments (jumps), to be used as ‘dj’ during integration.

Parameters

dj [source, or source subclass, or None] If an object complying with the source
protocol, it is returned (ptype, lam and y are ignored). If a source subclass, it
is instantiated with the given parameters, and returned. If None, a new instance of
cpoisson_source is returned, with the given parameters.

ptype, lam, y [see cpoisson_source documentation]

Returns

An object complying with the ‘‘source‘‘ protocol,

instantiating the requested stochasticity source.

The shape of source values is set to ‘‘wshape‘‘.

See also:

cpoisson_source

6.3.7 sdepy.SDE.more

SDE.more()
Further optional non array parameters, and initializations.

Parameters
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more_args [zero or more keyword arguments] Further, possibly non array-like, SDE
parameters, as implied by the more method signature. Passed upon instantiation of
the SDE class, are served to the more method and made available to other methods as
items in the args attribute.

Notes

The factors parameter of hull_white_SDE illustrates a use case for the more method.

6.3.8 sdepy.SDE.init

SDE.init(t, out_x, x0=1.0)
Set initial conditions for SDE integration.

Parameters

t [float] Time point at which initial conditions should be imposed.

out_x [array] Array, shaped wshape + (paths,), where initial conditions are to be
stored.

init_args [zero or more arrays, as keyword arguments] Initialization parameters, as im-
plied by the init method signature. Passed upon instantiation of the SDE class as
array-like, these parameters are served to the init method converted to arrays via
np.asarray.

Notes

The default implementation has a single x0 parameter, and sets out_x[...] = x0.

6.3.9 sdepy.SDE.let

SDE.let(t, out_x, x)
Store the value of the integrated process at time point t belonging to the requested output timeline.

Parameters

t [float] Time point to which the integration result x refers.

out_x [array] Array, shaped xshape + (paths,), where the result x is to be stored.

x [array] Integration result at time t, shaped wshape + (paths,)

Notes

The default implementation sets out_x[...] = x.

In case xshape != wshape, this method should operate as needed in order to store in out_x a
value broadcastable to its shape (e.g. it might store in out_x only some of the components of x).

x should be treated as read-only.

6.3.10 sdepy.SDE.result

SDE.result(tt, xx)
Compute the integration output.

Parameters
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tt [array] Output integration timeline.

xx [array] Integration result, shaped tt.shape + xshape + (paths,).

Returns

result Final result, returned to the user.

Notes

The default implementation returns sdepy.process(t=tt, x=xx). In case vshape !=
xshape, this method should operate as needed in order to return a process with values shaped as
vshape (e.g. it might return a function of the components of xx).

6.3.11 sdepy.SDE.info_begin

SDE.info_begin()
Optional diagnostic information logging function, called before the integration begins.

6.3.12 sdepy.SDE.info_next

SDE.info_next()
Optional diagnostic information logging function, called after each integration step.

6.3.13 sdepy.SDE.info_store

SDE.info_store()
Optional diagnostic information logging function, called after each invocation of the let method.

6.3.14 sdepy.SDE.info_end

SDE.info_end()
Optional diagnostic information logging function, called after the integration has been completed.

6.4 sdepy.SDEs

class sdepy.SDEs(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, get-
info=True, method=’euler’, **args)

Class representation of a user defined system of Stochastic Differential Equations (SDEs), intended for
subclassing.

The parent SDE class represents a single SDE, scalar or multidimensional: by an appropriate choice of the
vshape parameter, and composition of equation values, it suffices to describe any system of SDEs.

Its SDEs subclass is added for convenience of representation: it allows to state each equation separately and
to retrieve separate processes as a result. The number of equations must be stated as the q attribute. The
vshape parameter is taken as the common shape of values in each equation in the system.

A minimal definition of a lognormal process x with stochastic volatility y is as follows:

>>> from sdepy import SDEs, integrator
>>> class my_process(SDEs, integrator):
... q = 2
... def sde(self, t, x, y, mu=0., sigma=1., xi=1.):
... return ({'dt': mu*x, 'dw': y*x},

(continues on next page)
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(continued from previous page)

... {'dt': 0, 'dw': xi*y})

>>> P = my_process(x0=(1., 2.), xi=0.5, vshape=5,
... paths=100*1000, steps=100, )
>>> x, y = P(timeline=(0., 0.5, 1.))
>>> x.shape, y.shape
((3, 5, 100000), (3, 5, 100000))

See also:

SDE, integrator, paths_generator

Notes

By default, the stochasticity sources of each component equation are realized independently, even if repre-
sented in the sde output by the same key ('dw' in the example above).

The way stochasticity sources are instantiated and dispatched to each equation, and how correlations of the
Wiener source are set via the corr parameter, depend on the value of the addaxis attribute:

• If True, source values have shape vshape + (q,), and the [kk, i] component of source values
is dispatched to the kk component of equation i (kk is a multiindex spanning shape vshape). If
given, corr must be of shape (q, q) and correlates corresponding components across equations.

• If addaxis is False (default) and N is the size of the last axis of vshape, the values of the sources
have shape vshape[:-1] + (N*q,), and the [kk, i*N + h] component of the source val-
ues is dispatched to the [kk, h] component of equation i (kk is a multiindex spanning shape
vshape[:-1], and h is in range(N)). If given, corr must be of shape (N*q, N*q), and cor-
relates all last components of all equations to each other.

After instantiation, stochasticity sources and correlation matrices may be inspected as follows:

>>> P = my_process(vshape=(), rho=0.5)
>>> P.sources['dw'].vshape
(2,)
>>> P.sources['dw'].corr.shape
(2, 2)
>>> P.sources['dw'].corr[0, 1]
0.5

Attributes

q [int] Number of equations.

addaxis [bool] Affects the internal representation of the equations: if True, a last axis of
size q is added to vshape, if False, components are stacked onto the last axis of
vshape. Defaults to False. It is forced to True if the process components have
scalar values.

Methods

pack(xs) Packs the given arrays (one per equation) into a
single array.

unpack(X) Unpacks the given array into multiple arrays (one
per equation).
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6.4.1 sdepy.SDEs.pack

SDEs.pack(xs)
Packs the given arrays (one per equation) into a single array.

Parameters

xs [list of arrays] List of self.q arrays to be packed according to the addaxis at-
tribute setting.

Returns

X [array] Array packing the given xs along its second-last dimension (the last dimen-
sion enumerates paths).

6.4.2 sdepy.SDEs.unpack

SDEs.unpack(X)
Unpacks the given array into multiple arrays (one per equation).

Parameters

X [array] Array with a last dimension enumerating paths, and a second last dimension
to be unpacked according to the addaxis attribute setting.

Returns

x, y, . . . [list of arrays] List of self.q arrays, unpacking the given X.

6.5 sdepy.integrate

sdepy.integrate(sde=None, *, q=None, sources=None, log=False, addaxis=False)
Decorator for Ito Stochastic Differential Equation (SDE) integration.

Decorates a function representing the SDE or SDEs into the corresponding integrator (a subclass of SDE or
SDEs and of integrator).

Parameters

sde [function] Function to be wrapped. Its signature and values should be as expected for
the sde method of the SDE or SDEs classes.

q [int] Number of equations. If None, attempts a test evaluation of sde to find out.

sources [set] Stochasticity sources used in the equation. If None, attempts a test evaluation
of sde to find out.

log [bool] Sets the log attribute for the wrapping class.

addaxis [bool] Sets the addaxis attribute for the wrapping class.

Examples

>>> from sdepy import integrate
>>> @integrate
... def my_process(t, x, theta=1., k=1., sigma=1.):
... return {'dt': k*(theta - x), 'dw': sigma}

>>> P = my_process(x0=1, sigma=0.5, paths=100*1000, steps=100)
>>> x = P(timeline=(0., 0.5, 1.))
>>> x.shape
(3, 100000)
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Stochastic Processes

wiener_process([paths, vshape, dtype, . . . ]) Wiener process (Brownian motion) with drift.
lognorm_process([paths, vshape, dtype, . . . ]) Lognormal process.
ornstein_uhlenbeck_process([paths,
vshape, . . . ])

Ornstein-Uhlenbeck process (mean-reverting Brown-
ian motion).

hull_white_process([paths, vshape, dtype,
. . . ])

F-factors Hull-White process (sum of F correlated
mean-reverting Brownian motions).

hull_white_1factor_process([paths,
vshape, . . . ])

1-factor Hull-White process (F=1 Hull-White process
with F-index collapsed to a scalar).

cox_ingersoll_ross_process([paths,
vshape, . . . ])

Cox-Ingersoll-Ross mean reverting process.

full_heston_process([paths, vshape, dtype,
. . . ])

Heston stochastic volatility process (returns both pro-
cess and volatility).

heston_process([paths, vshape, dtype, . . . ]) Heston stochastic volatility process (stores and re-
turns process only).

jumpdiff_process([paths, vshape, dtype, . . . ]) Jump-diffusion process (lognormal process with com-
pound Poisson logarithmic jumps).

merton_jumpdiff_process([paths, vshape,
. . . ])

Merton jump-diffusion process (jump-diffusion pro-
cess with normal jump size distribution).

kou_jumpdiff_process([paths, vshape, dtype,
. . . ])

Double exponential (Kou) jump-diffusion process
(jump-diffusion process with double exponential
jump size distribution).

wiener_SDE(*[, paths, vshape, dtype, steps, . . . ]) SDE for a Wiener process (Brownian motion) with
drift.

lognorm_SDE(*[, paths, vshape, dtype, . . . ]) SDE for a lognormal process with drift.
ornstein_uhlenbeck_SDE(*[, paths, vshape,
. . . ])

SDE for an Ornstein-Uhlenbeck process.

hull_white_SDE(*[, paths, vshape, dtype, . . . ]) SDE for an F-factors Hull White process.
cox_ingersoll_ross_SDE(*[, paths, vshape,
. . . ])

SDE for a Cox-Ingersoll-Ross mean reverting pro-
cess.

full_heston_SDE(*[, paths, vshape, dtype, . . . ]) SDE for a Heston stochastic volatility process.
heston_SDE(*[, paths, vshape, dtype, steps, . . . ]) SDE for a Heston stochastic volatility process.
jumpdiff_SDE(*[, paths, vshape, dtype, . . . ]) SDE for a jump-diffusion process (lognormal process

with compound Poisson logarithmic jumps).
merton_jumpdiff_SDE(*[, paths, vshape, . . . ]) SDE for a Merton jump-diffusion process.

Continued on next page
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Table 1 – continued from previous page
kou_jumpdiff_SDE(*[, paths, vshape, dtype,
. . . ])

SDE for a double exponential (Kou) jump-diffusion
process.

7.1 sdepy.wiener_process

class sdepy.wiener_process(paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None,
getinfo=True, method=’euler’, x0=0., mu=0., sigma=1.,
dw=None, corr=None, rho=None)

Wiener process (Brownian motion) with drift.

Generates a process x(t) that solves the following SDE:

dx(t) = mu(t)*dt + sigma(t)*dw(t, dt)

where dw(t, dt) are standard Wiener process increments with correlation matrix specified by corr(t)
or rho(t). x0, SDE parameters and dw(t, dt) should broadcast to vshape + (paths,).

Parameters

paths, vshape, dtype, steps, i0, info, getinfo, method See SDE class documentation.

x0 [array-like] Initial condition.

mu, sigma [array-like, or callable] SDE parameters.

dw, corr, rho Specification of stochasticity source of Wiener process increments. See
SDE.source_dw documentation.

Returns

x [process] Once instantiated as p, p(timeline) performs the integration along the
given timeline, based on parameters of instantiation, and returns the resulting process.

See also:

SDE, SDE.source_dw , wiener_source, wiener_SDE

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

7.2 sdepy.lognorm_process

class sdepy.lognorm_process(paths=1, vshape=(), dtype=None, steps=None, i0=0,
info=None, getinfo=True, method=’euler’, x0=1., mu=0.,
sigma=1., dw=None, corr=None, rho=None)

Lognormal process.

Generates a process x(t) that solves the following SDE:

dx(t) = mu(t)*x(t)*dt + sigma(t)*x(t)*dw(t, dt)

where dw(t, dt) are standard Wiener process increments with correlation matrix specified by corr(t)
or rho(t). x0, SDE parameters and dw(t, dt) should broadcast to vshape + (paths,). x0
should be positive.
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Parameters

paths, vshape, dtype, steps, i0, info, getinfo, method See SDE class documentation.

x0 [array-like] Initial condition.

mu, sigma [array-like, or callable] SDE parameters.

dw, corr, rho Specification of stochasticity source of Wiener process increments. See
SDE.source_dw documentation.

Returns

x [process] Once instantiated as p, p(timeline) performs the integration along the
given timeline, based on parameters of instantiation, and returns the resulting process.

See also:

SDE, SDE.source_dw , wiener_source, wiener_SDE

Notes

x(t) is obtained via Euler-Maruyama numerical integration of the following equivalent SDE for a(t) =
log(x(t)):

da(t) = (mu(t) - sigma(t)**2/2)*dt + sigma(t)*dw(t, dt)

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

7.3 sdepy.ornstein_uhlenbeck_process

class sdepy.ornstein_uhlenbeck_process(paths=1, vshape=(), dtype=None,
steps=None, i0=0, info=None, getinfo=True,
method=’euler’, x0=0., theta=0., k=1.,
sigma=1., dw=None, corr=None, rho=None)

Ornstein-Uhlenbeck process (mean-reverting Brownian motion).

Generates a process x(t) that solves the following SDE:

dx(t) = k(t)*(theta(t) - x(t))*dt + sigma(t)*dw(t, dt)

where dw(t, dt) are standard Wiener process increments with correlation matrix specified by corr(t)
or rho(t). x0, SDE parameters and dw(t, dt) should broadcast to vshape + (paths,).

Parameters

paths, vshape, dtype, steps, i0, info, getinfo, method See SDE class documentation.

x0 [array-like] Initial condition.

theta, k, sigma [array-like, or callable] SDE parameters.

dw, corr, rho Specification of stochasticity source of Wiener process increments. See
SDE.source_dw documentation.

Returns
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x [process] Once instantiated as p, p(timeline) performs the integration along the
given timeline, based on parameters of instantiation, and returns the resulting process.

See also:

SDE, SDE.source_dw , wiener_source, ornstein_uhlenbeck_SDE

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

7.4 sdepy.hull_white_process

class sdepy.hull_white_process(paths=1, vshape=(), dtype=None, steps=None, i0=0,
info=None, getinfo=True, method=’euler’, factors=1,
x0=0., theta=0., k=1., sigma=1., dw=None, corr=None,
rho=None)

F-factors Hull-White process (sum of F correlated mean-reverting Brownian motions).

Generates a process x(t) that solves the following SDE:

x(t) = y_1(t) + ... + y_F(t)
dy_i(t) = k_i(t)*(theta_i(t) - y_i(t))*dt +

+ sigma_i(t)*dw_i(t, dt)

where dw_i(t, dt) are standard Wiener process increments with correlations dw_i(t,
dt)*dw_j(t, dt) = corr(t)[i, j]. x0, SDE parameters and dw(t, dt) should broad-
cast to vshape + (factors, paths).

Parameters

paths, vshape, dtype, steps, i0, info, getinfo, method See SDE class documentation.

x0 [array-like] Initial condition.

theta, k, sigma [array-like, or callable] SDE parameters.

dw, corr, rho Specification of stochasticity source of Wiener process increments. See
SDE.source_dw documentation.

See also:

SDE, SDE.source_dw , wiener_source, hull_white_SDE,
ornstein_uhlenbeck_process

Attributes

See SDE class documentation.

Methods

See SDE class documentation.
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7.5 sdepy.hull_white_1factor_process

class sdepy.hull_white_1factor_process(paths=1, vshape=(), dtype=None,
steps=None, i0=0, info=None, getinfo=True,
method=’euler’, x0=0., theta=0., k=1.,
sigma=1., dw=None, corr=None, rho=None)

1-factor Hull-White process (F=1 Hull-White process with F-index collapsed to a scalar). See
hull_white_process class documentation.

See also:

hull_white_process, ornstein_uhlenbeck_process

Notes

Class added for naming convenience. Differs from a hull_white_process with factors=1 in that
the last index of the process parameters has not been reserved to enumerate factors, and no factors
parameter is present. Synonymous with ornstein_uhlenbeck_process.

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

7.6 sdepy.cox_ingersoll_ross_process

class sdepy.cox_ingersoll_ross_process(paths=1, vshape=(), dtype=None,
steps=None, i0=0, info=None, getinfo=True,
method=’euler’, x0=1., theta=1., k=1., xi=1.,
dw=None, corr=None, rho=None)

Cox-Ingersoll-Ross mean reverting process.

Generates a process x(t) that solves the following SDE:

dx(t) = k(t)*(theta(t) - x(t))*dt + xi(t)*sqrt(x(t))*dw(t, dt)

where dw(t, dt) are standard Wiener process increments with correlation matrix specified by corr(t)
or rho(t). x0, SDE parameters and dw(t, dt) should broadcast to vshape + (paths,). x0,
theta, k should be positive.

Parameters

paths, vshape, dtype, steps, i0, info, getinfo, method See SDE class documentation.

x0 [array-like] Initial condition.

theta, k, xi [array-like, or callable] SDE parameters.

dw, corr, rho Specification of stochasticity source of Wiener process increments. See
SDE.source_dw documentation.

Returns

x [process] Once instantiated as p, p(timeline) performs the integration along the
given timeline, based on parameters of instantiation, and returns the resulting process.
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See also:

SDE, SDE.source_dw , wiener_source, cox_ingersoll_ross_SDE

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

7.7 sdepy.full_heston_process

class sdepy.full_heston_process(paths=1, vshape=(), dtype=None, steps=None, i0=0,
info=None, getinfo=True, method=’euler’, x0=1., mu=0.,
sigma=1., y0=1., theta=1., k=1., xi=1., dw=None,
corr=None, rho=None)

Heston stochastic volatility process (returns both process and volatility).

Generates processes x(t) and an y(t) that solve the following SDEs:

dx(t) = mu(t)*x(t)*dt + sigma(t)*x(t)*sqrt(y(t))*dw_x(t, dt),
dy(t) = k(t)*(theta(t) - y(t))*dt + xi(t)*sqrt(y(t))*dw_y(t, dt)

where, if N = vshape[-1] is the size of the last dimension of x(t), y(t), and dw(t, dt) are
standard Wiener process increments with shape vshape + (2*N, paths):

dw(t)[..., i, :]*dw(t)[..., j, :] = corr(t)[..., i, j]*dt
dw_x(t) = dw(t)[..., :N, :],
dw_y(t) = dw(t)[..., N:, :],

x0 and SDE parameters should broadcast to vshape + (paths,). dw(t, dt) should broadcast to
vshape[:-1] + (2*vshape[-1], paths). x0, y0, theta, k should be positive.

Parameters

paths, vshape, dtype, steps, i0, info, getinfo, method See SDE class documentation.

x0, y0 [array-like] Initial conditions for x(t) and y(t) processes respectively.

mu, sigma, theta, k, xi [array-like, or callable] SDE parameters.

dw, corr, rho Specification of stochasticity source of Wiener process increments. See
SDE.source_dw documentation.

Returns

x, y [processes] Once instantiated as p, p(timeline) performs the integration along the
given timeline, based on parameters of instantiation, and returns the resulting processes.

See also:

SDE, SDE.source_dw , wiener_source, full_heston_SDE

Notes

x(t), y(t) are obtained via Euler-Maruyama numerical integration of the above SDE for y(t) and of
the following equivalent SDE for a(t) = log(x(t)), handling negative values of y(t) via the full
truncation algorithm [1]:
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da(t) = (mu(t) - y(t)*sigma(t)**2/2)*dt + sqrt(y(t))*dw_x(t)

References

[1]

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

7.8 sdepy.heston_process

class sdepy.heston_process(paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None,
getinfo=True, method=’euler’, x0=1., mu=0., sigma=1., y0=1.,
theta=1., k=1., xi=1., dw=None, corr=None, rho=None)

Heston stochastic volatility process (stores and returns process only).

Generates a process as in full_heston_process (see its documentation), storing and returning the
x(t) component only.

Parameters

paths, vshape, dtype, steps, i0, info, getinfo, method See SDE class documentation.

x0, mu, sigma, y0, theta, k, xi, dw, corr, rho See full_heston_process class docu-
mentation.

Returns

x [process] Once instantiated as p, p(timeline) performs the integration along the
given timeline, based on parameters of instantiation, and returns the resulting process.

See also:

full_heston_process

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

7.9 sdepy.jumpdiff_process

class sdepy.jumpdiff_process(paths=1, vshape=(), dtype=None, steps=None, i0=0,
info=None, getinfo=True, method=’euler’, x0=1., mu=0.,
sigma=1., dw=None, corr=None, rho=None, dj=None,
dn=None, ptype=int, lam=1., y=None)

Jump-diffusion process (lognormal process with compound Poisson logarithmic jumps).
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Generates a process x(t) that solves the following SDE (see [1]):

dx(t) = mu(t)*x(t)*dt + sigma(t)*x(t)*dw(t, dt) + x(t)*dj(t, dt)

where dw(t, dt) are standard Wiener process increments with correlation matrix specified by corr(t)
or rho(t), and dj(t, dt) are increments of a Poisson process with intensity lam(t), compounded
with random variates distributed as exp(y(t)) - 1.

Parameters

paths, vshape, dtype, steps, i0, info, getinfo, method See SDE class documentation.

x0 [array-like] Initial condition.

mu, sigma [array-like, or callable] SDE parameters.

dw, corr, rho Specification of stochasticity source of Wiener process increments. See
SDE.source_dw documentation.

dj, dn, ptype, lam, y Specification of stochasticity source of compound Poisson process
increments. See SDE.source_dj documentation.

See also:

SDE, SDE.source_dw , SDE.source_dj, wiener_source, cpoisson_source,
jumpdiff_SDE

Notes

The drift of the mean value x_mean(t) of x(t) is mu(t) + nu(t), i.e. dx_mean(t)/dt = x_mean(t)*(mu(t) +
nu(t)), where:

nu(t) = lam(t)*(y_exp_mean(t) - 1)
y_exp_mean(t) = average of exp(y(t))

x(t) is obtained via Euler-Maruyama numerical integration of the following equivalent SDE for a(t) =
log(x(t)):

da(t) = (mu(t) - sigma(t)**2/2)*dt + x(t)*sigma(t)*dw(t, dt)
+ x(t)*dh(t, dt)

where dh(t, dt) are increments of a Poisson process with intensity lam(t) compounded with random
variates distributed as y(t).

References

[1]

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

64 Chapter 7. Stochastic Processes



SdePy Package Documentation, Release 1.0.1

7.10 sdepy.merton_jumpdiff_process

class sdepy.merton_jumpdiff_process(paths=1, vshape=(), dtype=None, steps=None,
i0=0, info=None, getinfo=True, method=’euler’,
x0=1., mu=0., sigma=1., dw=None, corr=None,
rho=None, dj=None, dn=None, ptype=int, lam=1.,
a=0., b=1.)

Merton jump-diffusion process (jump-diffusion process with normal jump size distribution).

Same as jumpdiff_process, where the y parameter is specialized to norm_rv(a, b), a normal
variate with mean a(t) and standard deviation b(t).

See also:

jumpdiff_process, norm_rv

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

7.11 sdepy.kou_jumpdiff_process

class sdepy.kou_jumpdiff_process(paths=1, vshape=(), dtype=None, steps=None, i0=0,
info=None, getinfo=True, method=’euler’, x0=1.,
mu=0., sigma=1., dw=None, corr=None, rho=None,
dj=None, dn=None, ptype=int, lam=1., a=0.5, b=0.5,
pa=0.5)

Double exponential (Kou) jump-diffusion process (jump-diffusion process with double exponential jump
size distribution).

Same as jumpdiff_process, where the y parameter is specialized to double_exp_rv(a, b,
pa), a double exponential variate with scale a(t) with probability pa(t), and -b(t) with probabil-
ity (1 - pa(t)).

See also:

jumpdiff_process, double_exp_rv

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

7.12 sdepy.wiener_SDE

class sdepy.wiener_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, get-
info=True, method=’euler’, **args)

SDE for a Wiener process (Brownian motion) with drift.
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See also:

wiener_process

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

7.13 sdepy.lognorm_SDE

class sdepy.lognorm_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None,
getinfo=True, method=’euler’, **args)

SDE for a lognormal process with drift.

See also:

lognorm_process

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

7.14 sdepy.ornstein_uhlenbeck_SDE

class sdepy.ornstein_uhlenbeck_SDE(*, paths=1, vshape=(), dtype=None, steps=None,
i0=0, info=None, getinfo=True, method=’euler’,
**args)

SDE for an Ornstein-Uhlenbeck process.

See also:

ornstein_uhlenbeck_process

Attributes

See SDE class documentation.

Methods

See SDE class documentation.
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7.15 sdepy.hull_white_SDE

class sdepy.hull_white_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0,
info=None, getinfo=True, method=’euler’, **args)

SDE for an F-factors Hull White process.

See also:

hull_white_process

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

7.16 sdepy.cox_ingersoll_ross_SDE

class sdepy.cox_ingersoll_ross_SDE(*, paths=1, vshape=(), dtype=None, steps=None,
i0=0, info=None, getinfo=True, method=’euler’,
**args)

SDE for a Cox-Ingersoll-Ross mean reverting process.

See also:

cox_ingersoll_ross_process

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

7.17 sdepy.full_heston_SDE

class sdepy.full_heston_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0,
info=None, getinfo=True, method=’euler’, **args)

SDE for a Heston stochastic volatility process.

See also:

full_heston_process, heston_process

Attributes

See SDE class documentation.
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Methods

See SDE class documentation.

7.18 sdepy.heston_SDE

class sdepy.heston_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None, get-
info=True, method=’euler’, **args)

SDE for a Heston stochastic volatility process.

See also:

heston_process, full_heston_process, full_heston_SDE

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

7.19 sdepy.jumpdiff_SDE

class sdepy.jumpdiff_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0, info=None,
getinfo=True, method=’euler’, **args)

SDE for a jump-diffusion process (lognormal process with compound Poisson logarithmic jumps).

See also:

jumpdiff_process

Attributes

See SDE class documentation.

Methods

See SDE class documentation.

7.20 sdepy.merton_jumpdiff_SDE

class sdepy.merton_jumpdiff_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0,
info=None, getinfo=True, method=’euler’, **args)

SDE for a Merton jump-diffusion process.

See also:

merton_jumpdiff_process, jumpdiff_SDE

Attributes

See SDE class documentation.
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Methods

See SDE class documentation.

7.21 sdepy.kou_jumpdiff_SDE

class sdepy.kou_jumpdiff_SDE(*, paths=1, vshape=(), dtype=None, steps=None, i0=0,
info=None, getinfo=True, method=’euler’, **args)

SDE for a double exponential (Kou) jump-diffusion process.

See also:

kou_jumpdiff_process, jumpdiff_SDE

Attributes

See SDE class documentation.

Methods

See SDE class documentation.
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CHAPTER 8

Analytical Results

wiener_mean(t, *[, x0, mu, sigma]) Mean of values at time t of a Wiener process (as per
the wiener_process class) with time-independent pa-
rameters.

wiener_var(t, *[, x0, mu, sigma]) Variance of values at time t of a Wiener process (as
per the wiener_process class) with time-independent
parameters.

wiener_std(t, *[, x0, mu, sigma]) Standard deviation of values at time t of a Wiener
process (as per the wiener_process class) with time-
independent parameters.

wiener_pdf(t, x, *[, x0, mu, sigma]) Probability distribution function of values at time t
of a Wiener process (as per the wiener_process class)
with time-independent parameters, evaluated at x.

wiener_cdf(t, x, *[, x0, mu, sigma]) Cumulative probability distribution function of val-
ues at time t of a Wiener process (as per the
wiener_process class) with time-independent param-
eters, evaluated at x.

wiener_chf(t, u, *[, x0, mu, sigma]) Characteristic function of the probability distribution
of values at time t of a Wiener process (as per the
wiener_process class) with time-independent param-
eters, evaluated at u.

lognorm_mean(t, *[, x0, mu, sigma]) Mean of values at time t of a lognormal process (as per
the lognorm_process class) with time-independent
parameters.

lognorm_var(t, *[, x0, mu, sigma]) Variance of values at time t of a lognormal pro-
cess (as per the lognorm_process class) with time-
independent parameters.

lognorm_std(t, *[, x0, mu, sigma]) Standard deviation of values at time t of a lognormal
process (as per the lognorm_process class) with time-
independent parameters.

lognorm_pdf(t, x, *[, x0, mu, sigma]) Probability distribution function of values at time t
of a lognormal process (as per the lognorm_process
class) with time-independent parameters, evaluated at
x.

Continued on next page
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Table 1 – continued from previous page
lognorm_cdf(t, x, *[, x0, mu, sigma]) Cumulative probability distribution function of val-

ues at time t of a lognormal process (as per the log-
norm_process class) with time-independent parame-
ters, evaluated at x.

lognorm_log_chf(t, u, *[, x0, mu, sigma]) Characteristic function of the probability distribution
of values at time t of the logarithm of a lognormal
process (as per the lognorm_process class) with time-
independent parameters, evaluated at u.

oruh_mean(t, *[, x0, theta, k, sigma]) Mean of values at time t of an Ornstein-Uhlenbeck
process (as per the ornstein_uhlenbeck_process class)
with time-independent parameters.

oruh_var(t, *[, x0, theta, k, sigma]) Variance of values at time t of an Ornstein-Uhlenbeck
process (as per the ornstein_uhlenbeck_process class)
with time-independent parameters.

oruh_std(t, *[, x0, theta, k, sigma]) Standard deviation of values at time t of an
Ornstein-Uhlenbeck process (as per the orn-
stein_uhlenbeck_process class) with time-
independent parameters.

oruh_pdf(t, x, *[, x0, theta, k, sigma]) Probability distribution function of values at time
t of an Ornstein-Uhlenbeck process (as per the
ornstein_uhlenbeck_process class) with time-
independent parameters, evaluated at x.

oruh_cdf(t, x, *[, x0, theta, k, sigma]) Cumulative probability distribution function of val-
ues at time t of an Ornstein-Uhlenbeck process (as
per the ornstein_uhlenbeck_process class) with time-
independent parameters, evaluated at x.

hw2f_mean(t, *[, x0, theta, k, sigma, rho]) Mean of values at time t of a Hull-White 2-factors pro-
cess (as per the hull_white_process class) with time-
independent parameters.

hw2f_var(t, *[, x0, theta, k, sigma, rho]) Variance of values at time t of a Hull-White 2-factors
process (as per the hull_white_process class) with
time-independent parameters.

hw2f_std(t, *[, x0, theta, k, sigma, rho]) Standard deviation of values at time t of a Hull-White
2-factors process (as per the hull_white_process
class) with time-independent parameters.

hw2f_pdf(t, x, *[, x0, theta, k, sigma, rho]) Probability distribution function of values at time
t of a Hull-White 2-factors process (as per the
hull_white_process class) with time-independent pa-
rameters, evaluated at x.

hw2f_cdf(**args) Cumulative probability distribution function of values
at time t of a Hull-White 2-factors process (as per the
hull_white_process class) with time-independent pa-
rameters, evaluated at x.

cir_mean(t, *[, x0, theta, k, xi]) Mean of values at time t of a Cox-Ingersoll-Ross
process (as per the cox_ingersoll_ross_process class)
with time-independent parameters.

cir_var(t, *[, x0, theta, k, xi]) Variance of values at time t of a Cox-Ingersoll-Ross
process (as per the cox_ingersoll_ross_process class)
with time-independent parameters.

cir_std(t, *[, x0, theta, k, xi]) Standard deviation of values at time t of
a Cox-Ingersoll-Ross process (as per the
cox_ingersoll_ross_process class) with time-
independent parameters.

Continued on next page
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Table 1 – continued from previous page
cir_pdf(t, x, *[, x0, theta, k, xi]) Probability distribution function of values at

time t of a Cox-Ingersoll-Ross process (as per
the cox_ingersoll_ross_process class) with time-
independent parameters, evaluated at x.

heston_log_mean(t, *[, x0, mu, sigma, y0, . . . ]) Mean of the logarithm of values at time t of a Hes-
ton process (as per the full_heston_process class) with
time-independent parameters.

heston_log_var(**args) Variance of the logarithm of values at time t of a Hes-
ton process (as per the full_heston_process class) with
time-independent parameters.

heston_log_std(t, *[, x0, mu, sigma, y0, . . . ]) Standard deviation of the logarithm of values at time
t of a Heston process (as per the full_heston_process
class) with time-independent parameters.

heston_log_pdf(t, logx, *[, x0, mu, sigma, . . . ]) Probability distribution function of values at time t
of the logarithm of a Heston process, (as per the
full_heston_process class) with time-independent pa-
rameters, evaluated at logx.

heston_log_chf(t, u, *[, x0, mu, sigma, y0, . . . ]) Characteristic function of the probability distribution
of values at time t of the logarithm of a Heston pro-
cess (as per the full_heston_process class) , with time-
independent parameters, evaluated at u.

mjd_log_pdf(t, logx, *[, x0, mu, sigma, . . . ]) Probability distribution function of values at time t of
the logarithm of a Merton jump-diffusion process (as
per the merton_jumpdiff_process class), with time-
independent parameters, evaluated at logx.

mjd_log_chf(t, u, *[, x0, mu, sigma, lam, a, b]) Characteristic function of the probability distribu-
tion of values at time t of the logarithm of a
Merton jump-diffusion process (as per the mer-
ton_jumpdiff_process class), with time-independent
parameters, evaluated at u.

kou_mean(t, *[, x0, mu, sigma, lam, a, b, pa]) Mean of values at time t of a double expo-
nential (Kou) jump-diffusion process (as per the
kou_jumpdiff_process class) with time-independent
parameters.

kou_log_pdf(t, logx, *[, x0, mu, sigma, . . . ]) Probability distribution function of values at time t of
the logarithm of a double-exponential (Kou) jump-
diffusion process (as per the kou_jumpdiff_process
class), with time-independent parameters, evaluated
at logx.

kou_log_chf(t, u, *[, x0, mu, sigma, lam, . . . ]) Characteristic function of the probability distribution
of values at time t of the logarithm of a Kou jump-
diffusion process, (as per the kou_jumpdiff_process
class) with time-independent parameters, evaluated at
u.

bsd1d2(k, t, *[, x0, r, q, sigma]) Black-Scholes d1 and d2 coefficients.
bscall(k, t, *[, x0, r, q, sigma]) Black-Scholes call option value.
bscall_delta(k, t, *[, x0, r, q, sigma]) Black-Scholes call option delta.
bsput(k, t, *[, x0, r, q, sigma]) Black-Scholes put option value.
bsput_delta(k, t, *[, x0, r, q, sigma]) Black-Scholes put option delta.

8.1 sdepy.wiener_mean

class sdepy.wiener_mean(t, *, x0=0., mu=0., sigma=1.)
Mean of values at time t of a Wiener process (as per the wiener_process class) with time-independent
parameters.
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See also:

wiener_process

Attributes

params

Methods

__call__

8.2 sdepy.wiener_var

class sdepy.wiener_var(t, *, x0=0., mu=0., sigma=1.)
Variance of values at time t of a Wiener process (as per the wiener_process class) with time-independent
parameters.

See also:

wiener_process

Attributes

params

Methods

__call__

8.3 sdepy.wiener_std

class sdepy.wiener_std(t, *, x0=0., mu=0., sigma=1.)
Standard deviation of values at time t of a Wiener process (as per the wiener_process class) with time-
independent parameters.

See also:

wiener_process

Attributes

params

Methods

__call__
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8.4 sdepy.wiener_pdf

class sdepy.wiener_pdf(t, x, *, x0=0., mu=0., sigma=1.)
Probability distribution function of values at time t of a Wiener process (as per the wiener_process class)
with time-independent parameters, evaluated at x.

See also:

wiener_process

Attributes

params

Methods

__call__

8.5 sdepy.wiener_cdf

class sdepy.wiener_cdf(t, x, *, x0=0., mu=0., sigma=1.)
Cumulative probability distribution function of values at time t of a Wiener process (as per the
wiener_process class) with time-independent parameters, evaluated at x.

See also:

wiener_process

Attributes

params

Methods

__call__

8.6 sdepy.wiener_chf

class sdepy.wiener_chf(t, u, *, x0=0., mu=0., sigma=1.)
Characteristic function of the probability distribution of values at time t of a Wiener process (as per the
wiener_process class) with time-independent parameters, evaluated at u.

See also:

wiener_process

Attributes

params

Methods

__call__
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8.7 sdepy.lognorm_mean

class sdepy.lognorm_mean(t, *, x0=1., mu=0., sigma=1.)
Mean of values at time t of a lognormal process (as per the lognorm_process class) with time-independent
parameters.

See also:

lognorm_process

Attributes

params

Methods

__call__

8.8 sdepy.lognorm_var

class sdepy.lognorm_var(t, *, x0=1., mu=0., sigma=1.)
Variance of values at time t of a lognormal process (as per the lognorm_process class) with time-independent
parameters.

See also:

lognorm_process

Attributes

params

Methods

__call__

8.9 sdepy.lognorm_std

class sdepy.lognorm_std(t, *, x0=1., mu=0., sigma=1.)
Standard deviation of values at time t of a lognormal process (as per the lognorm_process class) with time-
independent parameters.

See also:

lognorm_process

Attributes

params

Methods

__call__
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8.10 sdepy.lognorm_pdf

class sdepy.lognorm_pdf(t, x, *, x0=1., mu=0., sigma=1.)
Probability distribution function of values at time t of a lognormal process (as per the lognorm_process
class) with time-independent parameters, evaluated at x.

See also:

lognorm_process

Attributes

params

Methods

__call__

8.11 sdepy.lognorm_cdf

class sdepy.lognorm_cdf(t, x, *, x0=1., mu=0., sigma=1.)
Cumulative probability distribution function of values at time t of a lognormal process (as per the log-
norm_process class) with time-independent parameters, evaluated at x.

See also:

lognorm_process

Attributes

params

Methods

__call__

8.12 sdepy.lognorm_log_chf

class sdepy.lognorm_log_chf(t, u, *, x0=1., mu=0., sigma=1.)
Characteristic function of the probability distribution of values at time t of the logarithm of a lognormal
process (as per the lognorm_process class) with time-independent parameters, evaluated at u.

See also:

lognorm_process

Attributes

params

Methods

__call__
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8.13 sdepy.oruh_mean

class sdepy.oruh_mean(t, *, x0=0., theta=0., k=1., sigma=1.)
Mean of values at time t of an Ornstein-Uhlenbeck process (as per the ornstein_uhlenbeck_process class)
with time-independent parameters.

See also:

ornstein_uhlenbeck_process

Attributes

params

Methods

__call__

8.14 sdepy.oruh_var

class sdepy.oruh_var(t, *, x0=0., theta=0., k=1., sigma=1.)
Variance of values at time t of an Ornstein-Uhlenbeck process (as per the ornstein_uhlenbeck_process class)
with time-independent parameters.

See also:

ornstein_uhlenbeck_process

Attributes

params

Methods

__call__

8.15 sdepy.oruh_std

class sdepy.oruh_std(t, *, x0=0., theta=0., k=1., sigma=1.)
Standard deviation of values at time t of an Ornstein-Uhlenbeck process (as per the orn-
stein_uhlenbeck_process class) with time-independent parameters.

See also:

ornstein_uhlenbeck_process

Attributes

params

Methods

__call__
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8.16 sdepy.oruh_pdf

class sdepy.oruh_pdf(t, x, *, x0=0., theta=0., k=1., sigma=1.)
Probability distribution function of values at time t of an Ornstein-Uhlenbeck process (as per the orn-
stein_uhlenbeck_process class) with time-independent parameters, evaluated at x.

See also:

ornstein_uhlenbeck_process

Attributes

params

Methods

__call__

8.17 sdepy.oruh_cdf

class sdepy.oruh_cdf(t, x, *, x0=0., theta=0., k=1., sigma=1.)
Cumulative probability distribution function of values at time t of an Ornstein-Uhlenbeck process (as per
the ornstein_uhlenbeck_process class) with time-independent parameters, evaluated at x.

See also:

ornstein_uhlenbeck_process

Attributes

params

Methods

__call__

8.18 sdepy.hw2f_mean

class sdepy.hw2f_mean(t, *, x0=(0., 0.), theta=(0., 0.), k=(1., 1.), sigma=(1., 1.), rho=0.)
Mean of values at time t of a Hull-White 2-factors process (as per the hull_white_process class) with time-
independent parameters.

See also:

hull_white_process

Attributes

params

Methods

__call__
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8.19 sdepy.hw2f_var

class sdepy.hw2f_var(t, *, x0=(0., 0.), theta=(0., 0.), k=(1., 1.), sigma=(1., 1.), rho=0.)
Variance of values at time t of a Hull-White 2-factors process (as per the hull_white_process class) with
time-independent parameters.

See also:

hull_white_process

Attributes

params

Methods

__call__

8.20 sdepy.hw2f_std

class sdepy.hw2f_std(t, *, x0=(0., 0.), theta=(0., 0.), k=(1., 1.), sigma=(1., 1.), rho=0.)
Standard deviation of values at time t of a Hull-White 2-factors process (as per the hull_white_process class)
with time-independent parameters.

See also:

hull_white_process

Attributes

params

Methods

__call__

8.21 sdepy.hw2f_pdf

class sdepy.hw2f_pdf(t, x, *, x0=(0., 0.), theta=(0., 0.), k=(1., 1.), sigma=(1., 1.), rho=0.)
Probability distribution function of values at time t of a Hull-White 2-factors process (as per the
hull_white_process class) with time-independent parameters, evaluated at x.

See also:

hull_white_process

Attributes

params

Methods

__call__
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8.22 sdepy.hw2f_cdf

class sdepy.hw2f_cdf(**args)
Cumulative probability distribution function of values at time t of a Hull-White 2-factors process (as per the
hull_white_process class) with time-independent parameters, evaluated at x.

See also:

hull_white_process

Attributes

params

Methods

__call__

8.23 sdepy.cir_mean

class sdepy.cir_mean(t, *, x0=1., theta=1., k=1., xi=1.)
Mean of values at time t of a Cox-Ingersoll-Ross process (as per the cox_ingersoll_ross_process class) with
time-independent parameters.

See also:

cox_ingersoll_ross_process

Attributes

params

Methods

__call__

8.24 sdepy.cir_var

class sdepy.cir_var(t, *, x0=1., theta=1., k=1., xi=1.)
Variance of values at time t of a Cox-Ingersoll-Ross process (as per the cox_ingersoll_ross_process class)
with time-independent parameters.

See also:

cox_ingersoll_ross_process

Attributes

params

Methods

__call__
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8.25 sdepy.cir_std

class sdepy.cir_std(t, *, x0=1., theta=1., k=1., xi=1.)
Standard deviation of values at time t of a Cox-Ingersoll-Ross process (as per the
cox_ingersoll_ross_process class) with time-independent parameters.

See also:

cox_ingersoll_ross_process

Attributes

params

Methods

__call__

8.26 sdepy.cir_pdf

class sdepy.cir_pdf(t, x, *, x0=1., theta=1., k=1., xi=1.)
Probability distribution function of values at time t of a Cox-Ingersoll-Ross process (as per the
cox_ingersoll_ross_process class) with time-independent parameters, evaluated at x.

See also:

cox_ingersoll_ross_process

Attributes

params

Methods

__call__

8.27 sdepy.heston_log_mean

class sdepy.heston_log_mean(t, *, x0=1., mu=0., sigma=1., y0=1., theta=1., k=1., xi=1.,
rho=0.)

Mean of the logarithm of values at time t of a Heston process (as per the full_heston_process class) with
time-independent parameters.

See also:

full_heston_process

Attributes

params
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Methods

__call__

8.28 sdepy.heston_log_var

class sdepy.heston_log_var(**args)
Variance of the logarithm of values at time t of a Heston process (as per the full_heston_process class) with
time-independent parameters.

See also:

full_heston_process

Attributes

params

Methods

__call__

8.29 sdepy.heston_log_std

class sdepy.heston_log_std(t, *, x0=1., mu=0., sigma=1., y0=1., theta=1., k=1., xi=1.,
rho=0.)

Standard deviation of the logarithm of values at time t of a Heston process (as per the full_heston_process
class) with time-independent parameters.

See also:

full_heston_process

Attributes

params

Methods

__call__

8.30 sdepy.heston_log_pdf

class sdepy.heston_log_pdf(t, logx, *, x0=1., mu=0., sigma=1., y0=1., theta=1., k=1., xi=1.,
rho=0.)

Probability distribution function of values at time t of the logarithm of a Heston process, (as per the
full_heston_process class) with time-independent parameters, evaluated at logx.

See also:

full_heston_process
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Notes

Estimate by numerical integration, using scipy.integrate.quad, of the closed-form characteristic
function heston_log_chf. Integration errors are not reported/checked. Either t or logx must be a
scalar.

Attributes

params

Methods

__call__

8.31 sdepy.heston_log_chf

class sdepy.heston_log_chf(t, u, *, x0=1., mu=0., sigma=1., y0=1., theta=1., k=1., xi=1.,
rho=0.)

Characteristic function of the probability distribution of values at time t of the logarithm of a Heston process
(as per the full_heston_process class) , with time-independent parameters, evaluated at u.

See also:

full_heston_process

Attributes

params

Methods

__call__

8.32 sdepy.mjd_log_pdf

class sdepy.mjd_log_pdf(t, logx, *, x0=1., mu=0., sigma=1., lam=1., a=0.0, b=1.)
Probability distribution function of values at time t of the logarithm of a Merton jump-diffusion process (as
per the merton_jumpdiff_process class), with time-independent parameters, evaluated at logx.

See also:

jumpdiff_process, merton_jumpdiff_process, mjd_log_chf

Notes

Estimate by numerical integration, using scipy.integrate.quad, of the closed-form characteristic
function mjd_log_chf. Integration errors are not reported/checked. Either t or logx must be a scalar.

Attributes

params

84 Chapter 8. Analytical Results



SdePy Package Documentation, Release 1.0.1

Methods

__call__

8.33 sdepy.mjd_log_chf

class sdepy.mjd_log_chf(t, u, *, x0=1., mu=0., sigma=1., lam=1., a=0.0, b=1.)
Characteristic function of the probability distribution of values at time t of the logarithm of a Merton jump-
diffusion process (as per the merton_jumpdiff_process class), with time-independent parameters, evaluated
at u.

See also:

jumpdiff_process, merton_jumpdiff_process

Attributes

params

Methods

__call__

8.34 sdepy.kou_mean

class sdepy.kou_mean(t, *, x0=1., mu=0., sigma=1., lam=1., a=0.5, b=0.5, pa=0.5)
Mean of values at time t of a double exponential (Kou) jump-diffusion process (as per the
kou_jumpdiff_process class) with time-independent parameters.

See also:

jumpdiff_process, kou_jumpdiff_process

Attributes

params

Methods

__call__

8.35 sdepy.kou_log_pdf

class sdepy.kou_log_pdf(t, logx, *, x0=1., mu=0., sigma=1., lam=1., pa=0.5, a=0.5, b=0.5)
Probability distribution function of values at time t of the logarithm of a double-exponential (Kou) jump-
diffusion process (as per the kou_jumpdiff_process class), with time-independent parameters, evaluated at
logx.

See also:

jumpdiff_process, kou_jumpdiff_process, kou_log_chf
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Notes

Estimate by numerical integration, using scipy.integrate.quad, of the closed-form characteristic
function kou_log_chf. Integration errors are not reported/checked. Either t or logx must be a scalar.

Attributes

params

Methods

__call__

8.36 sdepy.kou_log_chf

class sdepy.kou_log_chf(t, u, *, x0=1., mu=0., sigma=1., lam=1., a=0.5, b=0.5, pa=0.5)
Characteristic function of the probability distribution of values at time t of the logarithm of a Kou jump-
diffusion process, (as per the kou_jumpdiff_process class) with time-independent parameters, evaluated at
u.

See also:

jumpdiff_process, kou_jumpdiff_process

Attributes

params

Methods

__call__

8.37 sdepy.bsd1d2

class sdepy.bsd1d2(k, t, *, x0=1., r=0., q=0., sigma=1.)
Black-Scholes d1 and d2 coefficients.

See also:

bscall

Attributes

params

Methods

__call__
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8.38 sdepy.bscall

class sdepy.bscall(k, t, *, x0=1., r=0., q=0., sigma=1.)
Black-Scholes call option value.

Parameters

k [array-like] Strike.

t [array-like] Time to maturity.

x0 [array-like] Initial value of underlying security.

r [array-like] Risk-free rate.

q [array-like] Dividend yield of underlying security.

sigma [array-like] Volatility of underlying security.

Returns

array Risk neutral valuation at time s=0 of an European call option paying max(x(t) -
k, 0) at maturity, where the price x(s) of the underlying security follows a lognor-
mal process with x(0) = x0 and volatility sigma.

See also:

bsd1d2, bscall_delta, bsput, bsput_delta

Notes

bscall(k, t, x0, r, q, sigma) returns:

bscall_value = x0*exp(-q*t)*norm.cdf(d1) + k*exp(-r*t)*norm.cdf(d2)

where cdf is scipy.stats.norm.cdf and d1, d2 = bsd1d2(k, t, x0, r, q, sigma)
are given as:

d1 = (log(x0/k) + (r - q + sigma**2/2)*t)/(sigma*sqrt(t))

d2 = d1 - sigma*sqrt(t)

Attributes

params

Methods

__call__

8.39 sdepy.bscall_delta

class sdepy.bscall_delta(k, t, *, x0=1., r=0., q=0., sigma=1.)
Black-Scholes call option delta.

See also:

bscall

Attributes
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params

Methods

__call__

8.40 sdepy.bsput

class sdepy.bsput(k, t, *, x0=1., r=0., q=0., sigma=1.)
Black-Scholes put option value.

See also:

bscall

Attributes

params

Methods

__call__

8.41 sdepy.bsput_delta

class sdepy.bsput_delta(k, t, *, x0=1., r=0., q=0., sigma=1.)
Black-Scholes put option delta.

See also:

bscall

Attributes

params

Methods

__call__
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CHAPTER 9

Shortcuts

Stochasticity sources and preset processes may be addressed using the following shortcuts:

Full name Shortcut
wiener_source dw
poisson_source dn
cpoisson_source dj
odd_wiener_source odd_dw
even_poisson_source even_dn
even_cpoisson_source even_dj
true_wiener_source true_dw
true_poisson_source true_dn
true_cpoisson_source true_dj
wiener_process wiener
lognorm_process lognorm
ornstein_uhlenbeck_process oruh
hull_white_process hwff
hull_white_1factor_process hw1f
cox_ingersoll_ross_process cir
full_heston_process heston_xy
heston_process heston
jumpdiff_process jumpdiff
merton_jumpdiff_process mjd
kou_jumpdiff_process kou

Shortcuts have been wrapped as “kfuncs”, objects with managed keyword arguments (see kfunc decorator doc-
umentation below).

Analytical results are named according to the shortcut of the corresponding process (e.g. lognorm_mean,
lognorm_cdf etc. from the lognorm shortcut) and are wrapped as kfuncs as well.

kfunc([f, nvar]) Decorator to wrap classes or functions as objects with
managed keyword arguments.

iskfunc(cls_or_object) Tests if the given class or instance has been wrapped
as a kfunc.
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9.1 sdepy.kfunc

sdepy.kfunc(f=None, *, nvar=None)
Decorator to wrap classes or functions as objects with managed keyword arguments.

This decorator, intended as an aid to interactive and notebook sessions, wraps a callable, class or function,
as a “kfunc” object that handles separately its parameters (keyword-only), whose values are stored in the
object, and its variables (positional or keyword), always provided upon evaluation.

Syntax:

@kfunc
class my_class:

def __init___(self, **kwparams):
...

def __call__(self, *var, **kwvar):
...

@kfunc(nvar=k)
def my_function(*var, **kwargs):

...

After decoration, my_class is a kfunc with kwparams as parameters, and with var and kwvar as
variables, and my_function is a kfunc with the first k of var, kwargs as variables, and the remaining
kwargs as parameters. For usage, see examples below.

Examples

Wrap wiener_source into a kfunc, named dw:

>>> from sdepy import wiener_source, kfunc
>>> dw = kfunc(wiener_source)

Instantiate dw and evaluate it (this is business as usual):

>>> my_instance = dw(paths=100, dtype=np.float32)
>>> x = my_instance(t=0, dt=1)
>>> x.shape, x.dtype
((100,), dtype('float32'))

Inspect kfunc parameters stored in my_instance:

>>> my_instance.params
{'paths': 100, 'vshape': (), 'dtype': <class 'numpy.float32'>, 'corr':
→˓None, 'rho': None}

Evaluate my_instance changing some parameters (call the instance with one or more):

>>> x = my_instance(t=0, dt=1, paths=999)
>>> x.shape, x.dtype
((999,), dtype('float32'))

Parameters stored in my_instance are not affected:

>>> my_instance.paths == my_instance.params['paths'] == 100
True

Create a new instance, changing some parameters and keeping those already set (call the instance without
passing any variables):
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>>> new_instance = my_instance(vshape=2, rho=0.5)
>>> new_instance.params
{'paths': 100, 'vshape': 2, 'dtype': <class 'numpy.float32'>, 'corr':
→˓None, 'rho': 0.5}

Instantiate and evaluate at once (pass one or more variables to the class constructor):

>>> x = dw(0, 1, paths=100, dtype=np.float32)
>>> x.shape, x.dtype
((100,), dtype('float32'))

As long as variables are passed by name, order doesn’t matter (omitted variables take default values, if any):

>>> x = dw(paths=100, dtype=np.float32, dt=1, t=0)
>>> x.shape, x.dtype
((100,), dtype('float32'))

Attributes

params [dictionary] Parameter values stored in the instance (read-only). For wrapped SDE
subclasses, also includes default values of all SDE-specific parameters, as stored in the
args attribute.

9.2 sdepy.iskfunc

sdepy.iskfunc(cls_or_object)
Tests if the given class or instance has been wrapped as a kfunc.
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CHAPTER 10

Testing

Tests have been set up within the numpy.testing framework. To launch tests, invoke sdepy.test() or
sdepy.test('full').

The testing subpackage sdepy.tests was written in pursuit of the following goals:

• Maximize case coverage, by exposing the package functions and methods to a plurality of different input
shapes, values, data types etc., and of different combinations thereof, as may be encountered in practice.

• Provide a quantitative validation of the algorithms, functions and processes covered in sdepy.

• Keep dependencies of the test code on the adopted testing framework to a bare minimum.

Most often, a number of testing cases is declared as a list or lists of classes and inputs, a general testing procedure
is set up, and the latter is iteratively applied to the former. Unfortunately, all this resulted in a thinly documented
(if at all), hard to read, and hard to maintain testing code base - sorry about that.

The quantitative validation of the package, via tests marked as 'slow' and 'quant', is done in two steps:

• To validate a sdepy release, tests are run with both 100 and 100000 paths against a fixed random seed.
Numerical integration results for the mean, standard deviation, probability distribution, and/or characteristic
function are compared against their exact values computed analytically from the process parameters. Com-
parisons are then plotted and visually inspected, and the occasional larger than usual deviation is manually
checked to be statistically acceptable, i.e. only so few standard deviations off the mark. The plots and the
average and maximum errors are recorded in png and text files located in the ./tests/cfr directory,
relative to the package home directory where sdepy.__file__ is located.

• Each time sdepy.test('full') is invoked, to keep testing times manageable and the testing procedure
uninvasive, tests are run with 100 paths against the same fixed random seed, without plotting or storing
results. The realized errors are then compared and checked against the expected errors, as distributed with
the package and stored in the ./tests/cfr directory.

Note that the tests rely on the reproducibility of expected errors, once random numbers have been seeded with
np.random.seed(), across platforms and versions of Python, NumPy and SciPy.

In order to reproduce the full tests and inspect the graphs, change the following configuration settings in the file
of the sdepy._config subpackage (private, not part of the API, may change in the future):

PLOT = True
SAVE_ERRORS = True
QUANT_TEST_MODE = 'HD'
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With these settings, tests are run with 100000 paths, and realized errors and plots are stored in the ./tests/cfr
directory. In case some tests fail, to carry out the whole procedure and get the failing errors and plots, set in the
same configuration file:

QUANT_TEST_FAIL = False
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